Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Photoreflectance spectroscopy and photoluminescence have been used to study the optical properties and electronic structure of InGaAs quantum rods grown by molecular beam epitaxy. Spectral features associated with interband optical transitions localized in the quantum rod and the surrounding quantum well regions are examined. Experimental results are compared with calculations performed within the envelope function approximation. A red shift of the quantum rod- and a blue shift of the quantum well-related optical transitions, along with a significant increase in PL intensity have been observed if an As_4 source is used instead of an As_2 source during the molecular beam epitaxial growth.
Journal
Year
Volume
Issue
Pages
164-166
Physical description
Dates
published
2011-02
Contributors
author
- Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108, Vilnius, Lithuania
author
- Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108, Vilnius, Lithuania
author
- Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108, Vilnius, Lithuania
author
- Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108, Vilnius, Lithuania
author
- Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108, Vilnius, Lithuania
author
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
author
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
author
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
References
- 1. L.H. Li, G. Patriarche, M. Rossetti, A. Fiore, J. Appl. Phys. 102, 033502 (2007)
- 2. J. Andrzejewski, G. Sęk, E. O'Reilly, A. Fiore, J. Misiewicz, J. Appl. Phys. 107, 073509 (2010)
- 3. P. Ridha, L.H. Li, M. Mexis, P.M. Smowton, J. Andrzejewski, G. Sęk, J. Misiewicz, E.P. O'Reilly, G. Patriarche, A. Fiore, IEEE J. Quantum Electron. 46, 197 (2010)
- 4. B. Čechavičius, J. Kavaliauskas, G. Krivaitė, D. Seliuta, G. Valušis, M.P. Halsall, M.J. Steer, P. Harrison, J. Appl. Phys. 98, 023508 (2005)
- 5. R. Nedzinskas, B. Čechavičius, J. Kavaliauskas, V. Karpus, D. Seliuta, V. Tamošiūnas, G. Valušis, G. Fasching, K. Unterrainer, G. Strasser, J. Appl. Phys. 106, 064308 (2009)
- 6. L.H. Li, P. Ridha, G. Patriarche, N. Chauvin, A. Fiore, Appl. Phys. Lett. 92, 121102 (2008)
- 7. M. Motyka, G. Sęk, K. Ryczko, J. Andrzejewski, J. Misiewicz, L.H. Li, A. Fiore, G. Patriarche, Appl. Phys. Lett. 90, 181933 (2007)
- 8. L.H. Li, E.H. Linfield, S.P. Khanna, A.G. Davies, J. Appl. Phys. 108, 103522 (2010)
- 9. nextnano^3, next generation 3D nanodevice simulator, website: http://www.nextnano.de/nextnano3/
- 10. R. Nedzinskas, B. Čechavičius, J. Kavaliauskas, V. Karpus, G. Krivaitė, V. Tamošiūnas, G. Valušis, F. Schrey, K. Unterrainer, G. Strasser, Acta Phys. Pol. A 113, 975 (2008)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv119n222kz