Journal
Article title
Title variants
Languages of publication
Abstracts
Electrochemical formation and microstructure of porous GaP have been investigated. Nanostructured porous GaP layers of thickness up to ≈ 20 μm were fabricated on n-type (111)-oriented crystalline c-GaP substrates. Studies of microstructure of porous GaP in dependence on electrolyte type and regimes of technological procedure have been carried out by scanning electron microscopy. The samples were characterized by spectroscopic ellipsometry in visible and near UV spectral range. The investigations have shown that the structure and optical response of porous GaP can be efficiently controlled by technological procedure of electrochemical formation. The shape and dimension of pores can be varied from nanometer-scaled cylindrical pores to GaP nanorods.
Discipline
- 82.45.Yz: Nanostructured materials in electrochemistry(for nanofabrication, see 81.16.-c in materials science)
- 81.07.Bc: Nanocrystalline materials
- 61.46.-w: Structure of nanoscale materials(for thermal properties of nanocrystals and nanotubes, see 65.80.-g; for mechanical properties of nanoscale systems, see 62.25.-g; for electronic transport in nanoscale materials, see 73.63.-b; see also 62.23.-c Structural classes of nanoscale systems; 64.70.Nd Structural transitions in nanoscale materials; for magnetic properties of nanostructures, see 75.75.-c)
- 78.40.Pg: Disordered solids
Journal
Year
Volume
Issue
Pages
131-134
Physical description
Dates
published
2011-02
Contributors
author
- Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius, Lithuania
author
- Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius, Lithuania
author
- Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius, Lithuania
author
- Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius, Lithuania
author
- Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius, Lithuania
References
- 1. W. Hallstrom, T. Mårtensson, Ch. Prinz, P. Gustavsson, L. Montelius, L. Samuelson, M. Kanje, Nanoletters 7, 2960 (2007)
- 2. H. Föll, M. Leisner, A. Cojocaru, J. Carstensen, Materials 3, 3006 (2010)
- 3. T.L. Sudesh, L. Wijesinghe, E.J. Teo, D.J. Blackwood, Electrochim. Acta 53, 4381 (2008)
- 4. J. Sabataityte, I. Simkiene, R.A. Bendorius, K. Grigoras, V. Jasutis, V. Pacebutas, H. Tvardauskas, K. Naudzius, Mater. Sci. Eng. C 19, 155 (2002)
- 5. S. Langa, J. Carstensen, I.M. Tiginyanu, M. Christopherson, H. Foll, Electrochem. Solid-State Lett. 4, G50 (2001)
- 6. Y.C. Shen, M.H. Hon, I.C. Leu, L.G. Teoh, Appl. Phys. A 98, 429 (2010)
- 7. M. Christophersen, S. Langa, J. Carstensen, I.M. Tinginyanu, H. Föll, Phys. Status Solidi A 197, 197 (2003)
- 8. S. Langa, J. Carstensen, M. Christophersen, K. Steen, S. Frey, I.M. Tinginyanu, H. Föll, J. Electrochem. Soc. 152, C525 (2005)
- 9. L. Santinacci, T. Djenizian, C.R. Chimie 11, 964 (2008)
- 10. B.H. Erné, D. Vanmaekelbergh, J.J. Kelly, Adv. Mater. 7, 739 (1995)
- 11. R.W. Tjerkstra, J. Gómez Rivas, D. Vanmaekelbergh, J.J. Kelly, Electrochem. Solid-State Lett. 5, G32 (2002)
- 12. P.C. Ricci, M. Salis, A. Anedda, J. Appl. Phys. 97, 113522 (2005)
- 13. A. Anedda, A. Serpi, V.A. Karavanskii, I.M. Tiginyanu, V.M. Ichizli, Appl. Phys. Lett. 67, 3316 (1995)
- 14. J. Wloka, D.J. Lockwood, P. Schmuki, Chem. Phys. Lett. 414, 47 (2005)
- 15. R.W. Tjerkstra, Electrochem. Solid-State Lett. 9, C81 (2006)
- 16. Y.C. Shen, M.H. Hon, I.C. Leu, L.G. Teoh, Appl. Phys. A 98, 429 (2010)
- 17. B.H. Erné, D. Vanmaekelbergh, J.J. Kelly, J. Electrochem. Soc. 143, 305 (1996)
- 18. V. Ichizli, H.L. Hartnagel, H. Mimura, H. Shimawaki, K. Yokoo, Appl. Phys. Lett. 79, 4016 (2001)
- 19. G.-J. Babonas, A. Niilisk, A. Reza, A. Matulis, A. Rosental, Proc. SPIE 5122, 50 (2003)
- 20. K. Tomioka, S. Adachi, J. Appl. Phys. 98, 073511 (2005)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv119n211kz