PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 2 | 131-134
Article title

Electrochemical Formation and Microstructure of Porous Gallium Phosphide

Content
Title variants
Languages of publication
EN
Abstracts
EN
Electrochemical formation and microstructure of porous GaP have been investigated. Nanostructured porous GaP layers of thickness up to ≈ 20 μm were fabricated on n-type (111)-oriented crystalline c-GaP substrates. Studies of microstructure of porous GaP in dependence on electrolyte type and regimes of technological procedure have been carried out by scanning electron microscopy. The samples were characterized by spectroscopic ellipsometry in visible and near UV spectral range. The investigations have shown that the structure and optical response of porous GaP can be efficiently controlled by technological procedure of electrochemical formation. The shape and dimension of pores can be varied from nanometer-scaled cylindrical pores to GaP nanorods.
Keywords
Contributors
author
  • Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius, Lithuania
author
  • Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius, Lithuania
author
  • Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius, Lithuania
author
  • Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius, Lithuania
author
  • Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius, Lithuania
References
  • 1. W. Hallstrom, T. Mårtensson, Ch. Prinz, P. Gustavsson, L. Montelius, L. Samuelson, M. Kanje, Nanoletters 7, 2960 (2007)
  • 2. H. Föll, M. Leisner, A. Cojocaru, J. Carstensen, Materials 3, 3006 (2010)
  • 3. T.L. Sudesh, L. Wijesinghe, E.J. Teo, D.J. Blackwood, Electrochim. Acta 53, 4381 (2008)
  • 4. J. Sabataityte, I. Simkiene, R.A. Bendorius, K. Grigoras, V. Jasutis, V. Pacebutas, H. Tvardauskas, K. Naudzius, Mater. Sci. Eng. C 19, 155 (2002)
  • 5. S. Langa, J. Carstensen, I.M. Tiginyanu, M. Christopherson, H. Foll, Electrochem. Solid-State Lett. 4, G50 (2001)
  • 6. Y.C. Shen, M.H. Hon, I.C. Leu, L.G. Teoh, Appl. Phys. A 98, 429 (2010)
  • 7. M. Christophersen, S. Langa, J. Carstensen, I.M. Tinginyanu, H. Föll, Phys. Status Solidi A 197, 197 (2003)
  • 8. S. Langa, J. Carstensen, M. Christophersen, K. Steen, S. Frey, I.M. Tinginyanu, H. Föll, J. Electrochem. Soc. 152, C525 (2005)
  • 9. L. Santinacci, T. Djenizian, C.R. Chimie 11, 964 (2008)
  • 10. B.H. Erné, D. Vanmaekelbergh, J.J. Kelly, Adv. Mater. 7, 739 (1995)
  • 11. R.W. Tjerkstra, J. Gómez Rivas, D. Vanmaekelbergh, J.J. Kelly, Electrochem. Solid-State Lett. 5, G32 (2002)
  • 12. P.C. Ricci, M. Salis, A. Anedda, J. Appl. Phys. 97, 113522 (2005)
  • 13. A. Anedda, A. Serpi, V.A. Karavanskii, I.M. Tiginyanu, V.M. Ichizli, Appl. Phys. Lett. 67, 3316 (1995)
  • 14. J. Wloka, D.J. Lockwood, P. Schmuki, Chem. Phys. Lett. 414, 47 (2005)
  • 15. R.W. Tjerkstra, Electrochem. Solid-State Lett. 9, C81 (2006)
  • 16. Y.C. Shen, M.H. Hon, I.C. Leu, L.G. Teoh, Appl. Phys. A 98, 429 (2010)
  • 17. B.H. Erné, D. Vanmaekelbergh, J.J. Kelly, J. Electrochem. Soc. 143, 305 (1996)
  • 18. V. Ichizli, H.L. Hartnagel, H. Mimura, H. Shimawaki, K. Yokoo, Appl. Phys. Lett. 79, 4016 (2001)
  • 19. G.-J. Babonas, A. Niilisk, A. Reza, A. Matulis, A. Rosental, Proc. SPIE 5122, 50 (2003)
  • 20. K. Tomioka, S. Adachi, J. Appl. Phys. 98, 073511 (2005)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv119n211kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.