Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 2 | 95-98
Article title

Morphology and Magnetic Coupling in ZnO:Co and ZnO:Ni Co-Doped with Li

Title variants
Languages of publication
Zn_{0.95}Co_{0.05}O and Zn_{0.97}Ni_{0.03}O nanorods, prepared by a solvothermal method, show intriguing morphology and magnetic properties when co-doped with Li. At low and moderate Li incorporation (below 10 and 3 at.% Li in the Co- and Ni-doped samples, respectively) the rod aspect ratio is increased and room temperature ferromagnetic properties are enhanced, whereas the ferromagnetic coupling in Zn_{0.97}Ni_{0.03}O is decreased for Li concentrations < 3 at.%. First-principles theoretical analyses demonstrate that Li co-doping has primarily two effects in bulk Zn_{1- x}M_{x}O (with M = Co or Ni). First, the Li-on-Zn acceptors increase the local magnetic moment by depopulating the M 3d minority spin-states. The magnetic coupling is Ruderman-Kittel-Kasuya-Yosida-like both without and with Li co-doping. Second, Li-on-Zn prefer to be close to the M atoms to compensate the M-O bonds and to locally depopulate the 3d states, and this will help forming high aspect nanostructures. The observed room temperature ferromagnetism in Li co-doped Zn_{1- x}M_{x}O nanorods can therefore be explained by the better rod morphology in combination with ionizing the magnetic M atoms.
  • Department of Materials Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
  • Department of Physics, University of Oslo, P.O.Box 1048 Blindern, NO-0316 Oslo, Norway
  • Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
  • Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
  • Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
  • Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
  • 1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dođan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)
  • 2. C. Klingshirn, Phys. Status Solidi B 244, 3027 (2007)
  • 3. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, J. Appl. Phys. 93, 1 (2003)
  • 4. T. Tietze, M. Gacic, G. Schütz, G. Jakob, S. Brück, E. Goering, New J. Phys. 10, 055009 (2008)
  • 5. A. Zunger, S. Lany, H. Raebiger, Physics 3, 53 (2010)
  • 6. O.D. Jayakumar, C. Sudakar, C. Persson, V. Sudarsan, T. Sakuntala, R. Naik, A.K. Tyagi, Cryst. Growth Des. 9, 4450 (2009)
  • 7. O.D. Jayakumar, C. Sudakar, C. Persson, V. Sudarsan, R. Naik, A.K. Tyagi, J. Phys. Chem. C 114, 17428 (2010)
  • 8. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)
  • 9. C. Persson, C.L. Dong, L. Vayssieres, A. Augustsson, T. Schmitt, M. Mattesini, R. Ahuja, J. Nordgren, C.L. Chang, A. Ferreira da Silva, J.-H. Guo, Microelectron. J. 37, 686 (2006)
  • 10. C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, M. Edoff, Phys. Rev. Lett. 97, 146403 (2006)
  • 11. W.E. Pickett, S.C. Erwin, E.C. Ethridge, Phys. Rev. B 58, 1201 (1998)
  • 12. T. Archer, R. Hanafin, S. Sanvito, Phys. Rev. B 78, 014431 (2008)
  • 13. K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, L555 (2000); Phys. Status Solidi B 229, 673 (2002) %
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.