PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 118 | 6 | 1189-1193
Article title

Feed Forward Neural Network for Autofluorescence Imaging Classification

Content
Title variants
Languages of publication
EN
Abstracts
EN
The key elements in cancer diagnostics are the early identification and estimation of the tumor growth and its spread in order to determine the area to be operated on. The aim of our study was to develop new methods of analyzing autofluorescence images which will allow us an objective and accurate assessment of the location of a tumor and will also be helpful in determining the advancement of the disease. The proposed classification methods are based on neural network algorithms. An Olympus company endoscopic system was used for an autofluorescence intestine imaging study. The autofluorescence imaging analysis process can be divided into several main stages. The first step is preparation of a training data set. The second one involves selection of feature space, namely the selection of those features which enable distinguishing the pathologically altered areas from the healthy ones. Final stages of the analysis include pathologically changed tissue classification and diagnosis.
Keywords
Publisher

Year
Volume
118
Issue
6
Pages
1189-1193
Physical description
Dates
published
2010-12
Contributors
author
  • Institute of Telecommunications, Teleinformatics and Acoustics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Institute of Telecommunications, Teleinformatics and Acoustics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Department of Miniinvasive and Proctological Surgery, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
References
  • 1. B. Palcic, S. Lam, J. Hung, C. MacAulay, Chest 99, 742 (1991)
  • 2. S. Lam, C. MacAulay, B. Palcic, Chest 103, 12 (1993)
  • 3. S. Lam, T. Kennedy, M. Unger, Y.E. Miller, D. Gelmont, V. Rusch, B. Gipe, D. Howard, J.C. LeRiche, A. Coldman, A.F. Gazdar, Chest 113, 696 (1998)
  • 4. H. Zeng, A. Weiss, R. Cline, C. MacAulay, Bioimaging 6, 151 (1998)
  • 5. M. Kara, F. Peters, F. Ten Kate, S. van Deventer, F. Fockens, J. Bergman, Gastrointestinal Endoscopy 61, 679 (2005)
  • 6. N. Uedo, H. Iishi, M. Tatsuta, T. Yamada, H. Ogiyama, K. Imanaka, N. Sugimoto, K. Higashino, R. Ishihara, H. Narahara, S. Ishiguro, Gastrointestinal Endoscopy 62, 521 (2005)
  • 7. W. Curvers, R. Singh, M. Wallace, L. Song, K. Ragunath, H. Wolfsen, F. Ten Kate, P. Fockens, J. Bergman, Gastrointestinal Endoscopy 70, 8 (2009)
  • 8. T. Wang, G. Triadafilopoulos, Gastrointestinal Endoscopy 61, 686 (2005)
  • 9. K. Boparai, F. van den Broek, S. van Eeden, P. Fockens, E. Dekker, Gastrointestinal Endoscopy 70, 947 (2005)
  • 10. A. Mayer-Base, Pattern Recognition for Medical Imaging, Elsevier Academic, Oxford 2004
  • 11. B.G. Tabachnick, L.S. Fidell, Using Multivariate Statistics, HarperCollins, New York 1996
  • 12. G. Konieczny, Z. Opilski, T. Pustelny, E. Maciak, Acta Phys. Pol. A 116, 344 (2009)
  • 13. W.L. Kleck, Discriminant Analysis, Sage Publications, USA 1980
  • 14. M. Hagan, M. Menhaj, IEEE Trans. Neural Networks 5, 989 (1994)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv118n626kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.