PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 118 | 6 | 1177-1182
Article title

Beam Quality of Multicore Fibre Lasers

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the paper the beam quality of the phase-locked multicore fibre lasers was investigated. The beam quality factor (BQF) of the coherently combined beam of the multicore fibre lasers should be determinate as the laser optical output power in a central peak far-field bucket divided by the total optical output power radiating from the effective near-field. Classical M^2 factor is not proper for evaluating the beam quality of phase-locked multicore fibre lasers because it degrades with the increasing number of cores. The beam quality factor of the manufactured multicore fibres equals: 7-core hexagonal structure fibre (BQF = 0.71, V = 2.4), 5-core (BQF = 0.70, V = 2.4), 30-core circular structure of core optical fibre laser possesses the lowest beam quality factor (BQF = 0.48, V = 2.4). However, the angular divergence of the central peak is reduced in proportion to the number of cores generating mutually coherent radiation. Numerical simulation shows that standard deviation of the phase error below 15° has an inconsiderable impact on the laser beam quality. The luminescence spectra of the fabricated constructions: 5-core, 7-core and 30-core double clad multicore optical fibres doped with Nd^{3+} were measured.
Keywords
EN
Publisher

Year
Volume
118
Issue
6
Pages
1177-1182
Physical description
Dates
published
2010-12
Contributors
  • Białystok University of Technology, Wiejska 45D, 15-351 Białystok, Poland
author
  • Białystok University of Technology, Wiejska 45D, 15-351 Białystok, Poland
author
  • Białystok University of Technology, Wiejska 45D, 15-351 Białystok, Poland
author
  • Białystok University of Technology, Wiejska 45D, 15-351 Białystok, Poland
References
  • 1. A. Zając, J. Świderski, P. Konieczny, S. Gągała, High Power Fibre Lasers - Analysis and Construction Requirements, MUT, Warsaw 2008
  • 2. A. Desfarges-Berthelemot, V. Kermene, D. Sabourdy, J. Boullet, P. Roy, J. Lhermite, A. Barthélémy, C.R. Phys. 7, 244 (2006)
  • 3. Y. Kono, M. Takeoka, K. Uto, A. Uchida, F. Kannari, IEEE J. Quant. Electron. 36, 607 (2000)
  • 4. Y. Li, L. Qiana, D. Lua, D. Fana, S. Wenb, Opt. Laser Technol. 39, 957 (2007)
  • 5. S. Serati., H.A. Masterson Linnenberger, Proc. 2004 IEEE 3, 6 (2004)
  • 6. M. Wrage, P. Glas, M. Leitner, D.V. Vysotsky, A.P. Napartovich, Opt. Commun. 191, 149 (2001)
  • 7. K. Barczak, T. Pustelny, D. Dorosz, J. Dorosz, Acta Phys. Pol. A 116, 247 (2009)
  • 8. K. Barczak, T. Pustelny, Z. Zycki, T. Blazejczak, Acta Phys. Pol. A 116, 250 (2009)
  • 9. T. Pustelny, M. Grabka, Acta Phys. Pol. A 116, 385 (2009)
  • 10. T. Pustelny, M. Grabka, Acta Phys. Pol. A 114, A-113 (2009)
  • 11. D. Dorosz, M. Kochanowicz, Proc. SPIE 7120, 71200H (2008)
  • 12. M. Kochanowicz, D. Dorosz, J. Żmojda, Proc SPIE 7502, 25 (2009)
  • 13. M. Kochanowicz, D. Dorosz, A. Zając, Electronics 10, 151 (2009)
  • 14. J. Petykiewicz, Wave Optics, PWN, Warsaw 1986
  • 15. P. Zhou, Z. Liu, X. Xu, Z. Chen, X. Wang, Opt. Laser Technol. 41, 268 (2009)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv118n623kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.