PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 118 | 4 | 677-687
Article title

Modern Rheology on a Stock Market: Fractional Dynamics of Indices

Content
Title variants
Languages of publication
EN
Abstracts
EN
This paper presents an exactly solvable (by applying the fractional calculus) the rheological model of fractional dynamics of financial market conformed to the principle of no arbitrage present on financial market. The rheological model of fractional dynamics of financial market describes some singular, empirical, speculative daily peaks of stock market indices, which define crashes as a kind of phase transition. In the frame of the model the plastic market hypothesis and financial uncertainty principle were formulated, which proposed possible scenarios of some market crashes. The brief presentation of the model was made in our earlier work (and references therein). The rheological model of fractional dynamics of financial market is a deterministic model and it is complementary to already existing other ones; together with them it offers possibility for thorough and widespread technical analysis of crashes. The constitutive, fractional integral equation of the model is an analogy of the corresponding one, which defines the fractional Zener model of plastic material. The fractional Zener model is the canonical one for modern rheology, polymer physics and biophysics concerning non-Debye relaxation of viscoelastic biopolymers. The useful approximate solution of the constitutive equation of the rheological model of fractional dynamics of financial market consists of two parts: (i) the first one connected with long-term memory present in the system, which is proportional to the generalized exponential function defined by the Mittag-Leffler function and (ii) the second one describing oscillations (e.g. beats or oscillations having two slightly shifted frequences). The shape exponent leading the Mittag-Leffler function, defines here the order of the phase transition between bullish and bearish states of the financial market, in particular, for recent hossa and bessa on some small, middle and large stock markets. It happened that this solution also successfully estimated some long-term price dynamics on the hypothetical market in United States.
Keywords
Contributors
author
  • Division of Physics Education, Institute of Experimental Physics, Department of Physics, Warsaw University, Smyczkowa Str. 5/7, PL-02-678 Warsaw, Poland
author
  • Division of Physics Education, Institute of Experimental Physics, Department of Physics, Warsaw University, Smyczkowa Str. 5/7, PL-02-678 Warsaw, Poland
References
  • 1. M. Kozłowska, A. Kasprzak, R. Kutner, Int. J. Mod. Phys. C 19, 453 (2008)
  • 2. D. Sornette, Why Stock Markets Crash. Critical Events in Complex Financial Systems, Princeton University Press, Princeton 2003
  • 3. C. Tsallis, Braz. J. Phys. 39, 337 (2009)
  • 4. B.M. Roehner, Patterns of Speculation. A Study in Observational Econophysics, Cambridge University Press, Cambridge UK 2002
  • 5. M. Ausloos, in: Econophysics and Sociophysics. Trends and Perspectives, Eds. B.K. Chakrabarti, A. Chakraborti, A. Chatterjee, Wiley-VCH Verlag, Weinheim 2006, Ch. 9, p. 249
  • 6. W.-X. Zhou, D. Sornette, Physica A 330, 543 (2003)
  • 7. W.-X. Zhou, D. Sornette, Physica A 330, 584 (2003)
  • 8. P. Gnaciński, D. Makowiec, Physica A 344, 322 (2004)
  • 9. S. Drożdż, F. Grummer, F. Ruf, J. Speth, Physica A 324, 174 (2003)
  • 10. S. Drożdż, J. Kwapień, P. Oświęcimka, J. Speth, Acta Phys. Pol. A 114, 539 (2008)
  • 11. D. Sornette, A. Johansen, J.-P. Bouchaud, J. Phys. I France 6, 167 (1996)
  • 12. D. Sornette, A. Johansen, Physica A 245, 411 (1997)
  • 13. D. Sornette, A. Johansen, Quant. Finance 1, 452 (2001)
  • 14. A. Johansen, D. Sornette, J. Risk 4, 69 (2001)
  • 15. A. Johansen, Comment on Are financial crashes predictble? by L. Laloux, M. Potters, R. Cont, J.-P. Aguilar, J.-P. Bouchaud, Europhysics Lett. 60 (5), 809 (2002)
  • 16. D. Grech, Z. Mazur, Acta Phys. Pol. B 36, 2403 (2005)
  • 17. R. Badii, A. Politi, Complexity. Hierarchical Structures and Scaling in Physics, Cambridge University Press, Cambridge UK 1997
  • 18. W. Paul, J. Baschnagel, Stochastic Processes. From Physics to Finance, Springer-Verlag, Berlin 1999
  • 19. R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, Cambridge UK 2000
  • 20. J.-P. Bouchaud, M. Potters, Theory of Financial Risks. From Statistical Physics to Risk Management, Cambridge University Press, Cambridge UK 2001
  • 21. K. Ilinski, Physics of Finance. Gauge Modelling in Non-Equilibrium Pricing, Wiley, Chichester 2001
  • 22. E. Scales, R. Gorenflo, F. Mainardi, Phys. Rev. E 69, 011107 (2004)
  • 23. L. Sabatellil, S. Keating, J. Dudley, P. Richmond, Eur. Phys. J. B 27, 273 (2002)
  • 24. Special Issue & Directory, Nonextensive Statistical Mechanics: New Trends, New Perspectives, Europhysicsnews 36/6 (2005)
  • 25. F. Schweitzer, Brownian Agents and Active Particles, Springer-Verlag, Berlin 2003
  • 26. A. Bunde, J. Kantelhardt, Phys. Blätter 57, 49 (2001)
  • 27. R. Cont, J.-P. Bouchaud, Macroecon. Dyn. 4, 170 (2000)
  • 28. H. Schiessel, Chr. Friedrich, Blumen, in Applications of Fractional Calculus in Physics, Ed. R. Hilfer, World Scientific, Singapore 2000, Chap. 7, pp. 331-376
  • 32. W.-X. Zhou, D. Sornette, Physica A 330, 584 (2003)
  • 12. P. Gnaciński, D. Makowiec, Physica A 344, 322 (2004)
  • 13. S. Drożdż, F. Grummer, F. Ruf, J. Speth, Physica A 324, 174 (2003)
  • 14. S. Drożdż, J. Kwapień, P. Oświęcimka, J. Speth, Acta Phys. Pol. A 114, 539 (2008)
  • 15. D. Sornette, A. Johansen, J.-P. Bouchaud, J. Phys. I (France) 6, 167 (1996)
  • 16. D. Sornette, A. Johansen, Physica A 245, 411 (1997)
  • 17. D. Sornette, A. Johansen, Quant. Finance 1, 452 (2001)
  • 18. A. Johansen, D. Sornette, J. Risk 4, 69 (2001)
  • 19. A. Johansen, Comment on 'Are financial crashes predictable?' by L. Laloux, M. Potters, R. Cont, J.-P. Aguilar, J.-P. Bouchaud, Europhysics Lett. 60, 809 (2002)
  • 17. H. Schiessel, Ch.F. Blumen, in Applications of Fractional Calculus in Physics, Ed. R. Hilfer, World Sci., Singapore 2000, Ch. 7, p. 331
  • 18. W.G. Glöckle, Th.F. Nonnenmacher, Macromolecules 24, 6426 (1991)
  • 29. Th.F. Nonnenmacher, R. Metzler, Applications of Fractional Calculus in Physics, Ed. R. Hilfer, World Sci., Singapore 2000, Ch. 8, p. 377
  • 30. N. Tschoegel, The Phenomenological Theory of Linear Viscoelastic Behavior, Springer-Verlag, Berlin 1989
  • 31. R. Richert, A. Blumen, Disorder Effects on Relaxational Processes: Glasses, Polymers, Proteins, Eds. R. Richert, A. Blumen, Springer, Berlin 1994, Ch. 1, p. 1
  • 32. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)
  • 33. P.L. Butzer, U. Westphal, Applications of Fractional Calculus in Physics, Ed. R. Hilfer, World Sci., Singapore 2000, Ch. 1 p. 1
  • 34. F. Mainardi, M. Raberto, R. Gorenflo, E. Scales, Physica A 287, 468 (2000)
  • 24. C. Tsallis, Braz. J. Phys. 39, 337 (2009)
  • 25. M. Kozłowska, A. Kasprzak, R. Kutner, Int. J. Mod. Phys. C 19, 453 (2008)
  • 35. R. Kutner, F. Świtała, Qunatitative Finance 3, 201 (2003)
  • 27. H. Schiessel, A. Blumen, J. Phys. A, Math. Gen. 26, 5057 (1995)
  • 29. W.G. Glöckle, Th.F. Nonnenmacher, Rheol. Acta 33, 337 (1994)
  • 36. H. Schiessel, A. Blumen, J. Phys. A: Math. Gen. 26, 5057 (1995)
  • 37. W.G. Glöckle, Th.F. Nonnenmacher, Macromolecules 24 6426 (1991)
  • 38. W.G. Glöckle, Th.F. Nonnenmacher, Rheol. Acta 33, 337 (1994)
  • 39. P. Richmond, S. Hutzler, R. Coelho, P. Reptowicz, in Ref. [9], Ch. 5, p. 131
  • 40. S. Iyazima, K. Yamamoto, in: Practical Fruits of Econophysics. Proceedings of the Third Nikkei Econophysics Symposium, Ed. H. Takayasu, Springer-Verlag, Berlin 2006, p. 344
  • 41. K. Yamamoto, S. Miyazima, H. Yamamoto, T. Ohtsuki, A. Fujihara, in Ref. [40], p. 349
  • 42. M. Jagielski, R. Kutner, Acta Phys. Pol. A 118, 615 (2010)
  • 43. E. Borgonovo, L. Peccati, in: Uncertainty and Risk, Eds. M. Abdellaoni, R.D. Luce, M.J. Machina, B. Munier, Springer-Verlag, Berlin 2007, Part I, p. 41
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv118n428kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.