Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 118 | 2 | 283-288

Article title

Electromagnetic Response in Kinetic Energy Driven Superconductivity: the Meissner Effect

Content

Title variants

Languages of publication

EN

Abstracts

EN
Electromagnetic response of cuprate superconductors is studied within the model of kinetic energy driven d-wave superconductivity by analyzing the Meissner effect. The kernel of the linear response function is found and employed to calculate the magnetic field penetration depth and the superfluid density of cuprate superconductors within the specular reflection model for a purely transverse vector potential. It is shown that the magnetic field penetration depth and the superfluid density depend linearly on temperature, except for a strong deviation from the linear characteristics at extremely low temperatures, which is attributed to nonlocal effects. The zero-temperature superfluid density is found to decrease linearly with decreasing doping concentration in the underdoped regime. The problem of gauge invariance in the theoretical description of the electromagnetic response is addressed, and an approximation which does not violate local charge conservation is proposed.

Keywords

EN

Contributors

author
  • Department of Physics, Beijing Normal University, Beijing 100875, China
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Department of Physics, Jinan University, Guangzhou 510623, China
author
  • Department of Physics, Beijing Normal University, Beijing 100875, China
author
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

References

  • 1. W.N. Hardy, D.A. Bonn, D.C. Morgan, R. Liang, K. Zhang, Phys. Rev. Lett. 70, 3999 (1993)
  • 2. A. Damascelli, Z. Hussain, Z.X. Shen, Rev. Mod. Phys. 75, 473 (2003)
  • 3. S. Kamal, R. Liang, A. Hosseini, D.A. Bonn, W.N. Hardy, Phys. Rev. B 58, R8933 (1998)
  • 4. D.M. Broun, W.A. Huttema, P.J. Turner, S. Özcan, B. Morgan, R. Liang, W.N. Hardy, D.A. Bonn, Phys. Rev. Lett. 99, 237003 (2007)
  • 5. Y. Uemura, G.M. Luke, B.J. Sternlieb, J.H. Brewer, J.F. Carolan, W.N. Hardy, R. Kadono, J.R. Kempton, R.F. Kiefl, S.R. Kreitzman, P. Mulhern, T.M. Riseman, D.Ll. Williams, B.X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A.W. Sleight, M.A. Subramanian, C.L. Chien, M.Z. Cieplak, Phys. Rev. Lett. 62, 2317 (1989); Y. Uemura, L.P. Le, G.M. Luke, B.J. Sternlieb, W.D. Wu, J.H. Brewer, T.M. Riseman, C.L. Seaman, M.B. Maple, M. Ishikawa, D.G. Hinks, J.D. Jorgensen, G. Saito, H. Yamochi, Phys. Rev. Lett. 66, 2665 (1991)
  • 6. R. Khasanov, D.G. Eshchenko, H. Luetkens, E. Morenzoni, T. Prokscha, A. Suter, N. Garifianov, M. Mali, J. Roos, K. Conder, H. Keller, Phys. Rev. Lett. 92, 057602 (2004)
  • 7. A. Suter, E. Morenzoni, R. Khasanov, H. Luetkens, T. Prokscha, N. Garifianov, Phys. Rev. Lett. 92, 087001 (2004)
  • 8. I. Kosztin, A.J. Leggett, Phys. Rev. Lett. 79, 135 (1997)
  • 9. Shiping Feng, Phys. Rev. B 68, 184501 (2003); Shiping Feng, Tianxing Ma, Huaiming Guo, Physica C 436, 14 (2006)
  • 10. See, e.g., the review: Shiping Feng, Huaiming Guo, Yu Lan, Li Cheng, Int. J. Mod. Phys. B 22, 3757 (2008), and references therein
  • 11. D.E. Sheehy, T.P. Davis, M. Franz, Phys. Rev. B 70, 054510 (2004)
  • 12. P.W. Anderson, in: Frontiers and Borderlines in Many Particle Physics, Eds. R.A. Broglia, J.R. Schrieffer, North-Holland, Amsterdam 1988, p. 1; Science 235, 1196 (1987)
  • 13. K.A. Chao, J. Spałek, A.M. Oleś, J. Phys. C 10, L271 (1977)
  • 14. Shiping Feng, Jihong Qin, Tianxing Ma, J. Phys., Condens. Matter 16, 343 (2004)
  • 15. P. Wróbel, R. Eder, R. Micnas, J. Phys., Condens. Matter 15, 2755 (2003); P. Wróbel, R. Eder, P. Fulde, J. Phys., Condens. Matter 15, 6599 (2003); P. Wróbel, A. Maciąg, R. Eder, P. Fulde, R. Micnas, Acta Phys. Pol. A 106, 575 (2004)
  • 16. H. Eskes, A.M. Oleś, M.B.J. Meinders, W. Stephan, Phys. Rev. B 50, 17980 (1994)
  • 17. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York 1971, Sect. 13.52
  • 18. H. Fukuyama, H. Ebisawa, Y. Wada, Prog. Theor. Phys. 42, 494 (1969); H. Fukuyama, Prog. Theor. Phys. 42, 1284 (1969)
  • 19. M. Krzyzosiak, R. Gonczarek, Physica C 426-431, 273 (2005); Int. J. Mod. Phys. B 18, 4143 (2004); R. Gonczarek, M. Krzyzosiak, in: Progress in Superconductivity Research, Ed. O.A. Chang, Nova Science Publishers, New York 2008, p. 163
  • 20. M. Krzyzosiak, Yu Lan, Shiping Feng, R. Gonczarek, arXiv:09040093
  • 21. J.R. Schrieffer, Theory of Superconductivity, Addison-Wesley, Reading, MA 1964
  • 22. M. Tinkham, Introduction to Superconductivity, McGraw-Hill, New York 1996, App. 3
  • 23. See, e.g., B.A. Bonn, W.N. Hardy, in: Physical Properties of High Temperature Superconductors V, Ed. D.M. Ginsberg, World Scientific, Singapore 1996, and references therein
  • 24. T. Pereg-Barnea, P.J. Turner, R. Harris, G.K. Mullins, J.S. Bobowski, M. Raudsepp, R. Liang, D.A. Bonn, W.N. Hardy, Phys. Rev. B 69, 184513 (2004); C. Panagopoulos, J.R. Cooper, G.B. Peacock, I. Gameson, P.P. Edwards, W. Schmidbauer, J.W. Hodby, Phys. Rev. B 53, R2999 (1996)
  • 25. S. Misawa, Phys. Rev. B 49, 6305 (1994)
  • 26. P.I. Arseev, S.O. Loiko, N.K. Fedorov, Phys.-Usp. 49, 1 (2006)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv118n213kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.