Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 118 | 2 | 279-282

Article title

Bose-Hubbard Model in the Rotating Frame of Reference

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Following a novel experimental arrangement which can rotate a two-dimensional optical lattice at frequencies up to several kilohertz we discuss the ground state of the two-dimensional Bose-Hubbard Hamiltonian, relevant for rotating gaseous Bose-Einstein condensates, by employing U(1) quantum rotor approach and the topologically constrained path integral. Ultracold atoms in such a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields. We derive an effective quantum action for the Bose-Hubbard model, which enables a non-perturbative treatment of the zero-temperature phase transition in the rotating frame. We calculate the ground-state phase diagram, analytically deriving maximum repulsive energy for several rational values of the frustration rotation parameter f = 0, 1/2, 1/3, 1/4, and 1/6 for the square and triangular lattice. Performed calculations revealed strong non-monotonical dependence of the critical ratio of the kinetic energy to the repulsive on-site energy, that separates the global coherent from the insulating state, on topology of the lattice.

Keywords

EN

Contributors

author
  • Faculty of Physics, Adam Mickiewicz University of Poznań, Umultowska 85, 61-614 Poznań, Poland
author
  • Institute for Low Temperatures and Structure Research, Polish Academy of Sciences, POB 1410, 50-950 Wrocław 2, Poland

References

  • 1. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)
  • 2. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)
  • 3. M. Greiner, I. Bloch, O. Mandel, T.W. Hänsch, T. Esslinger, Phys. Rev. Lett. 87, 160405 (2001)
  • 4. I. Coddington, P.C. Haljan, P. Engels, V. Schweikhard, S. Tung, E.A. Cornell, Phys. Rev. A 70, 063607 (2004)
  • 5. S. Tung, V. Schweikhard, E.A. Cornell, Phys. Rev. Lett. 97, 240402 (2006)
  • 6. V. Schweikhard, S. Tung, E.A. Cornell, Phys. Rev. Lett. 99, 030401 (2007)
  • 7. R. Bhat, B.M. Peden, B.T. Seaman, M. Krämer, L.D. Carr, M.J. Holland, Phys. Rev. A 74, 063606 (2006)
  • 8. R. Bhat, M. Krämer, J. Cooper, M.J. Holland, Phys. Rev. A 76, 043601 (2007)
  • 9. N.R. Cooper, Adv. Phys. 57, 539 (2008)
  • 10. A. Leggett, Quantum Liquids, Oxford, New York 2006
  • 11. T.K. Kopeć, Phys. Rev. B 70, 054518 (2004)
  • 12. T.P. Polak, T.K. Kopeć, Phys. Rev. B 76, 094503 (2007)
  • 13. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)
  • 14. A.P. Kampf, G.T. Zimanyi, Phys. Rev. B 47, 279 (1993)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv118n212kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.