Preferences help
enabled [disable] Abstract
Number of results
2010 | 118 | 2 | 279-282
Article title

Bose-Hubbard Model in the Rotating Frame of Reference

Title variants
Languages of publication
Following a novel experimental arrangement which can rotate a two-dimensional optical lattice at frequencies up to several kilohertz we discuss the ground state of the two-dimensional Bose-Hubbard Hamiltonian, relevant for rotating gaseous Bose-Einstein condensates, by employing U(1) quantum rotor approach and the topologically constrained path integral. Ultracold atoms in such a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields. We derive an effective quantum action for the Bose-Hubbard model, which enables a non-perturbative treatment of the zero-temperature phase transition in the rotating frame. We calculate the ground-state phase diagram, analytically deriving maximum repulsive energy for several rational values of the frustration rotation parameter f = 0, 1/2, 1/3, 1/4, and 1/6 for the square and triangular lattice. Performed calculations revealed strong non-monotonical dependence of the critical ratio of the kinetic energy to the repulsive on-site energy, that separates the global coherent from the insulating state, on topology of the lattice.
  • Faculty of Physics, Adam Mickiewicz University of Poznań, Umultowska 85, 61-614 Poznań, Poland
  • Institute for Low Temperatures and Structure Research, Polish Academy of Sciences, POB 1410, 50-950 Wrocław 2, Poland
  • 1. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)
  • 2. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)
  • 3. M. Greiner, I. Bloch, O. Mandel, T.W. Hänsch, T. Esslinger, Phys. Rev. Lett. 87, 160405 (2001)
  • 4. I. Coddington, P.C. Haljan, P. Engels, V. Schweikhard, S. Tung, E.A. Cornell, Phys. Rev. A 70, 063607 (2004)
  • 5. S. Tung, V. Schweikhard, E.A. Cornell, Phys. Rev. Lett. 97, 240402 (2006)
  • 6. V. Schweikhard, S. Tung, E.A. Cornell, Phys. Rev. Lett. 99, 030401 (2007)
  • 7. R. Bhat, B.M. Peden, B.T. Seaman, M. Krämer, L.D. Carr, M.J. Holland, Phys. Rev. A 74, 063606 (2006)
  • 8. R. Bhat, M. Krämer, J. Cooper, M.J. Holland, Phys. Rev. A 76, 043601 (2007)
  • 9. N.R. Cooper, Adv. Phys. 57, 539 (2008)
  • 10. A. Leggett, Quantum Liquids, Oxford, New York 2006
  • 11. T.K. Kopeć, Phys. Rev. B 70, 054518 (2004)
  • 12. T.P. Polak, T.K. Kopeć, Phys. Rev. B 76, 094503 (2007)
  • 13. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)
  • 14. A.P. Kampf, G.T. Zimanyi, Phys. Rev. B 47, 279 (1993)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.