PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 118 | 2 | 267-272
Article title

Electron Spectral Functions in the Presence of the Antiferromagnetic Order in the Two-Dimensional Hubbard Model

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We use a recently proposed quantum SU(2)×U(1) rotor approach for the Hubbard model to calculate electronic spectral functions in a presence of an antiferromagnetic state for any value of the Coulomb interaction. We isolate the collective variables for charge and spin in the form of the space-time fluctuating U(1) phase field and SU(2) rotating spin quantization axis, respectively. As a result, the fermion Green function in the space-time domain becomes a product of a CP^1 propagator resulting from the SU(2) gauge fields, U(1) phase propagator and the pseudo-fermion correlation function. In turn, the spectral lines are obtained by performing the convolution of spin, charge and pseudo-fermion Green's functions. We observe an emergence of a sharp peak in the electron spectral functions within the antiferromagnetic phase, whose spectral weight is equal to the antiferromagnetic order parameter.
Keywords
EN
Year
Volume
118
Issue
2
Pages
267-272
Physical description
Dates
published
2010-08
References
  • 1. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)
  • 2. J. Hubbard, Proc. R. Soc. A 276, 238 (1963); N.F. Mott, Metal-Insulator Transitions, Taylor and Francis, London 1990
  • 3. V. Zlatić, K.D. Schotte, G. Schliecker, Phys. Rev. B 52, 3639 (1995)
  • 4. C.A. Lamas, arXiv:0708.4344v2
  • 5. Y.M. Vilk, A.-M.S. Tremblay, J. Phys. I (France) 7, 1309 (1997)
  • 6. Y.M. Vilk, L. Chen, A.-M.S. Tremblay, Phys. Rev. B 49, 13267 (1994)
  • 7. T.A. Zaleski, T.K. Kopeć, Phys. Rev. B 77, 125120 (2008)
  • 8. K. Borejsza, N. Dupuis, Phys. Rev. B 69, 085119 (2004)
  • 9. N. Dupuis, Phys. Rev. B 65, 245118 (2002)
  • 10. N. Bulut, D.J. Scalapino, S.R. White, Phys. Rev. Lett. 72, 705 (1994)
  • 11. A. Moreo, S. Haas, A.W. Sandvik, E. Dagotto, Phys. Rev. B 51, 12045 (1995)
  • 12. R. Preuss, W. Hanke, W. von der Linden, Phys. Rev. Lett. 75, 1344 (1995)
  • 13. N.S. Vidhyadhiraja, A. Macridin, C. Sen, M. Jarrell, M. Ma, arXiv:0809.1477v1
  • 14. O. Juillet, New J. Phys. 9, 163 (2007)
  • 15. N. Bulut, Adv. Phys. 51, 1587 (2002)
  • 16. A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)
  • 17. Th. Maier, M. Jarrel, Th. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)
  • 18. M.V. Berry, Proc. R. Soc. Lond., Ser. A 392, 451 (1984)
  • 19. H.J. Schulz, Phys. Rev. Lett. 65, 2462 (1990)
  • 20. J. Hubbard, Phys. Rev. Lett. 3, 77 (1959); R.L. Stratonovich, Sov. Phys. Dokl. 2, 416 (1958)
  • 21. V.N. Popov, Functional Integrals and Collective Excitations, Cambridge University Press, Cambridge 1987
  • 22. L.S. Schulman, Techniques and Applications of Path Integration, Wiley, New York 1981
  • 23. T.K. Kopeć, Phys. Rev. B 72, 132503 (2005)
  • 24. E. Fradkin, Field Theories of Condensed Matter Systems, Addison-Wesley, Reading 1991
  • 25. A.V. Chubukov, D.M. Frenkel, Phys. Rev. B 46, 11884 (1992)
  • 26. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv118n210kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.