PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 117 | 1 | 221-227
Article title

Low-Loss Microwave Dielectrics for Different Frequency Ranges

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Depending on the operating frequency range of modern communication systems various microwave elements are required for effective operation of radio equipment. In this work potential ways of developing the microwave dielectric materials for different frequency ranges are discussed. It has been shown that temperature stable dielectrics with the permittivity of about 100, which are intended for the utilization in the decimetre wavelength band, can be developed by means of alio- and isovalent substitution in the cation sublattices of barium lanthanide titanates (BLTss) Ba_{6-x}Ln_{8 + 2x/3}Ti_{18}O_{54} (Ln = La-Gd). The temperature behaviour of the permittivity and dielectric loss in the BLTss has been discussed in terms of both harmonic and anharmonic contributions to the phonons of the BLT crystal lattice. It has been shown that a slight deviation from the compositional stoichiometry in both A-site and B-site deficient perovskites Ba(M_{1/3}^{2+}Nb_{2/3})O_{3} (M = Co, Zn, Mg) allows a prominent enhancement of their microwave quality factor (Q). As a consequence, new dielectrics with the extremely high quality factor (Qxf = 90000-150000 GHz), which are intended for the utilization in the centimetre wavelength band, can be developed. Some examples of the possible implementation of the developed materials are also discussed.
Keywords
Contributors
author
  • V.I. Vernadskii Institute of General and Inorganic Chemistry NAS of Ukraine, 32/24 Palladin ave., 03680 Kyiv-142, Ukraine
author
  • V.I. Vernadskii Institute of General and Inorganic Chemistry NAS of Ukraine, 32/24 Palladin ave., 03680 Kyiv-142, Ukraine
References
  • 1. W. Wersing, Curr. Opin. Solid State Mater. Sci. 1, 715 (1996)
  • 2. M.T. Sebastian, Dielectric Materials for Wireless Communication, Elsevier, Oxford, U.K. 2008, p. 668
  • 3. A.G. Belous, J. Europ. Ceram. Soc. 21, 2717 (2001)
  • 4. R.G. Matveeva, M.B. Varfolomeev, L.S. Ilyuhchenko, Russ. J. Inorg. Chem. 29, 17 (1984)
  • 5. D. Kolar, Z. Stadler, S. Gaberšček, D. Suvorov, Ber. Dt. Keram. Ges. B 55, 346 (1978)
  • 6. H. Ohsato, M. Mizuta, T. Ikoma, Z. Onogi, S. Nishigaki, T. Okuda, J. Ceram. Soc. Japan 106, 178 (1998)
  • 7. T. Negas, P.K. Davies, Materials and Processes for Wireless Communications, Ceram. Trans. 53, 179 (1995)
  • 8. A. Belous, O. Ovchar, M. Valant, D. Suvorov, J. Mater. Res. 16, 2350 (2001)
  • 9. A. Belous, O. Ovchar, M. Valant, D. Suvorov, J. Appl. Phys. 92, 3917 (2002)
  • 10. Y.M. Poplavko, Physics of Dielectrics, Vyshcha Shkola, Kiev 1980, p. 243 (in Russian)
  • 11. A. Belous, O. Ovchar, M. Valant, D. Suvorov, D. Kolar, J. Europ. Ceram. Soc. 21, 2723 (2001)
  • 12. S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, S. Hayakawa, Proc. Ferroelect. Mater. Appl. 1, 293 (1977)
  • 13. H. Matsumoto, H. Tamura, K. Wakino, Jpn. J. Appl. Phys. 30, 2347 (1991)
  • 14. F. Galasso, J. Pyle, Inorg. Chem. 2, 482 (1963)
  • 15. P.K. Davies, J. Tong, T. Negas, J. Am. Ceram. Soc. 80, 1724 (1997)
  • 16. T. Kolodiazhnyi, A. Petric, A. Belous, O. V'yunov, O. Yanchevskij, J. Mater. Res. 17, 3182 (2002)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv117z146kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.