Journal
Article title
Title variants
Languages of publication
Abstracts
The work presents experimental results of an in situ investigation of the OH^{-} absorption in pure and MgO-doped LiNbO_{3} crystals during reducing (95% Ar + 5% H_{2}) and oxidizing (O_{2}) high-temperature treatments in the temperature range from room temperature to 820 K. The absorption spectra measured in situ at high temperatures in reducing/oxidizing atmospheres have been analyzed. The origin of the changes in optical absorption caused by heating of the crystal is discussed in terms of the OH-bonds orientation change.
Discipline
- 77.84.-s: Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials(for nonlinear optical materials, see 42.70.Mp; for dielectric materials in electrochemistry, see 82.45.Un)
- 78.30.-j: Infrared and Raman spectra(for vibrational states in crystals and disordered systems, see 63.20.-e and 63.50.-x, respectively; for Raman spectra of superconductors, see 74.25.nd)
- 42.70.Mp: Nonlinear optical crystals(see also 77.84.-s Dielectric, piezoelectric, and ferroelectric materials)
Journal
Year
Volume
Issue
Pages
170-173
Physical description
Dates
published
2010-01
Contributors
author
- Lviv Polytechnic National University, Lviv, Ukraine
author
- Lviv Polytechnic National University, Lviv, Ukraine
- Institute of Materials, SRC "Carat", Lviv, Ukraine
author
- Lviv Polytechnic National University, Lviv, Ukraine
author
- Institute of Materials, SRC "Carat", Lviv, Ukraine
author
- Lviv Polytechnic National University, Lviv, Ukraine
author
- Lviv Polytechnic National University, Lviv, Ukraine
author
- Institute of Physical and Theoretical Chemistry, Technical University Braunschweig, Braunschweig, Germany
References
- 1. M. Woehelcke, L. Kovacs, Crit. Rev. Solid Cryst. Mater. Sci. 26, 1 (2001)
- 2. J.M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, S. Mueller, E. Dieguez, Adv. Phys. 45, 349 (1996)
- 3. E.M. de Miguel-Sanz, M. Carrascosa, L. Arizmendi, Phys. Rev. B 65, 165101 (2002)
- 4. P. Nekvindova, J. Spirkova, J. Cervena, M. Budnar, A. Razpet, B. Zorko, P. Pelicon, Opt. Mater. 19, 245 (2002)
- 5. T. Volk, M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, Springer, Berlin 2009
- 6. R.G. Smith, D.B. Fraser, R.T. Denton, T.C. Rich, J. Appl. Phys. 39, 4600 (1968)
- 7. Y. Kong, W. Zhang, X. Chen, J. Xu, G. Zhang, J. Phys., Condens. Matter 11, 2139 (1999)
- 8. X.Q. Feng, Y.B. Tang, J. Phys., Condens. Matter 5, 2423 (1993)
- 9. W. Bollmann, H.J. Stoehr, Phys. Status Solidi A 39, 477 (1977)
- 10. T.B. Wang, S.L. Guo, L. Chen, L. Cao, H. Li, Z.G. Liu, C.Z. Tan, Optik 118, 604 (2007)
- 11. L. Kovacs, V. Szalay, R. Capaletti, Solid State Commun. 52, 1029 (1984)
- 12. G. Dravecz, L. Kovacz, Appl. Phys. B 88, 305 (2007)
- 13. A. V. Yatsenko, Ukr. J. Phys. 44, 381 (1999) (in Russian)
- 14. S.V. Evdokimov, A.V. Yatsenko, Crystallography 48, 594 (2003) (in Russian)
- 15. K. Lengyel, L. Kovács, Á. Péter, K. Polgar, G. Corradi, Technical Digest of the International Workshop Lithium Niobate from Material to Device, from Device to System, 2005, p. 97
- 16. I. Solskii, D. Sugak, V. Gaba, Techn. Des. Electron. Dev. 5, 51 (2005) (in Russian)
- 17. D. Sugak, A. Matkovskii, I. Solskii, B. Kopko, V. Olijnyk, I. Stefanskii, V. Gaba, V. Grabovskii, I. Zaritskii, L. Rakitina, Cryst. Res. Technol. 32, 805 (1997)
- 18. D. Sugak, Ya. Zhydachevskii, Yu. Sugak, O. Buryy, S. Ubizskii, I. Solskii, M. Schrader, K.-D. Becker, J. Phys., Condens. Matter 19, 086211 (2007)
- 19. D. Sugak, Ya. Zhydachevskii, Yu. Sugak, O. Buryy, S. Ubizskii, I. Solskii, A. Boerger, K.-D. Becker, Phys. Chem. Chem. Phys. 11, 3138 (2009)
- 20. U. Heinemeyer, M.C. Wengler, K. Buse, Appl. Phys. Lett. 89, 112910 (2006)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv117z133kz