Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 117 | 1 | 78-85

Article title

Symmetry Pattern and Domain Wall Structure in GdFeO_{3} Perovskite Type

Content

Title variants

Languages of publication

EN

Abstracts

EN
Symmetry relations between the domain states in GdFeO_{3} type crystals have been obtained using group-theoretical analysis for prototype and ferroelastic space groups. Models for possible domain pairs are developed. The ion locations on the domain boundary were estimated as intermediate positions between the sites in crystal structure of neighboring domain states. It is shown that the crystalline structure of the boundary approaches to the prototype phase structure - the ideal ABO_{3} perovskite-type structure, however certain deformations remain. In addition to the shifts of the all ions the tilts of oxygen octahedra of the some type and related displacements of A ions should take place during the switching of orientation states. The tilts of octahedra and displacements of A ions are sufficient to form translation states (antiphase domains). Antiphase domains can have boundaries between themselves basically along the three faces of the orthorhombic cell.

Keywords

EN

Contributors

author
  • Lviv Polytechnic National University, 12 Bandera St., 79013 Lviv, Ukraine
  • SRC "Carat", 202 Stryjska St., 79031 Lviv, Ukraine
author
  • Lviv Polytechnic National University, 12 Bandera St., 79013 Lviv, Ukraine
author
  • Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany

References

  • 1. A.M. Glazer, Acta Crystallogr. B 28, 3384 (1972)
  • 2. S. Geller, V.B. Bala, Acta Crystallogr. 9, 1019 (1956)
  • 3. A.A. Levin, Kristallografiya 37, 1020 (1992)
  • 4. M. Marezio, P.D. Dernier, J.P. Remeika, J. Solid State Chem. 4, 11 (1972)
  • 5. R. Diehl, G. Brandt, Mater. Res. Bull. 10, 85 (1975)
  • 6. S. Geller, Acta Crystallogr. 10, 243 (1957)
  • 7. M. Sundberg, P.-E. Werner, M. Westdahl, K. Mazur, Mater. Sci. Forum 166-169, 795 (1994)
  • 8. S.B. Ubizskii, L.O. Vasylechko, D.I. Savytskii, A.O. Matkovskii, I.M. Syvorotka, Supercond. Sci. Technol. 7, 766 (1994)
  • 9. P. Coppens, M. Eibschutz, Acta Crystallogr. 19, 524 (1965)
  • 10. S. Geller, E.A. Wood, Acta Crystallogr. 9, 563 (1956)
  • 11. M. Marezio, J.P. Remeika, P.D. Dernier, Acta Crystallogr. B 26, 2008 (1970)
  • 12. A.V. Arakcheeva, D.Ju. Pucharovskii, V.M. Geki-mianz, V.A. Popov, G.U. Lubman, Kristallografiya 42, 54 (1997)
  • 13. D.A. MacLean, H. Ng, J.E. Greedan, J. Solid State Chem. 30, 35 (1979)
  • 14. Y. Wang, F. Guyot, R.C. Liebermann, J. Geophys. Res. 97, B9, 12327 (1992)
  • 15. H. Wondratschek, W. Jeitschko, Acta Crystallogr. A 32, 664 (1976)
  • 16. M. Guymont, Phys. Rev. B 18, 5385 (1978)
  • 17. G. Jung, V. Markovich, C.J. Beek, D. Mogilyansky, Ya.M. Mukovskii, Phys. Rev. B 72, 134412 (2005)
  • 18. C. Wang, Q.F. Fang, Y. Shi, Z.G. Zhu, Mater. Res. Bull. 36, 2657 (2001)
  • 19. H. Frayssignes, M. Gabbay, G. Fantozzi, N.J. Porch, B.L. Cheng, T.W. Button, J. Eur. Ceram. Soc. 24, 2989 (2004)
  • 20. S.-T. Zhang, G.-L. Yuan, J. Wang, Y.-F. Chen, G.-Xu. Cheng, Z.-G. Liu, Solid. State Commun. 132, 315 (2004)
  • 21. J.Z. Liu, Y.X. Jia, R.N. Shelton, M.J. Fluss, Phys. Rev. Lett. 66, 1354 (1991)
  • 22. D. Savytskii, L. Vasylechko, U. Bismayer, C. Paulmann, M. Berkowski, NATO Science Series 202, 135 (2005)
  • 23. M. Kurumada, E. Iguchi, D. Savytskii, J. Appl. Phys. 100, 014107 (2006)
  • 24. A.K. Pradhan, Y. Feng, S. Shibata, K. Nakao, N. Koshizuka, Physica C 357-360, 457 (2001)
  • 25. H.F. Kay, P.C. Bailey, Acta Crystallogr. 10, 219 (1957)
  • 26. Y. Wang, Science 248, 468 (1990)
  • 27. Y. Wang, Science 251, 410 (1991)
  • 28. T.J. White, R.L. Segall, J.C. Barry, J.L. Hutchison, Acta Crystallogr. B 41, 93 (1985)
  • 29. I.K. Bdikin, I.M. Shmyt'ko, A.M. Balbashov, A.V. Kazansky, J. Appl. Crystallogr. 26, 71 (1993)
  • 30. G.W. Berkstresser, A.J. Valentino, C.D. Brandle, J. Cryst. Growth 109, 457 (1991)
  • 31. J. Fink-Finowicki, M. Berkowski, A. Pajaczkowska, J. Mater. Sci. 27, 107 (1992)
  • 32. A.N. Morozov, O.Ju. Morozova, N.I. Ponomarev, Kristallografiya 38, 149 (1993)
  • 33. D.I. Savytskii, S.B. Ubizskii, L.O. Vasylechko, A.O. Matkovskii, I.M. Syvorotka, Functional Materials ( Kharkiv, Ukraine) 1, 55 (1994)
  • 34. G.-D. Yao, M. Dudley, Y. Wang, X. Liu, R.C. Liebermann, Mater. Sci. Eng. A 132, 23 (1991)
  • 35. D.I. Savytskii, S.B. Ubizskii, L.O. Vasylechko, I.M. Syvorotka, A.O. Matkovskii, Acta Phys. Pol. A 92, 231 (1997)
  • 36. V. Janovec, Czech. J. Phys. B 22, 974 (1972)
  • 37. V.K. Wadhawan, Phase Transit. 3, 3 (1982)
  • 38. Th. Hahn, Space-group symmetry, Vol. A, in: International Tables for Crystallography, Kluwer Academic Publ., Dordrecht 2002
  • 39. J. Chrosch, E.K.H. Salje, J. Appl. Phys. 85, 722 (1999)
  • 40. Y. Ding, D.D. Liang, J. Appl. Phys. 92, 5425 (2002)
  • 41. D.I. Savytskii, S.B. Ubizskii, L.O. Vasylechko, A.O. Matkovskii, Crystallogr. Rep. 41, 859 (1996). [ Kristallografiya (Moscow) 41, 902 (1996)]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv117z113kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.