Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 117 | 1 | 7-14

Article title

Nanostructural Superconducting Materials for Fault Current Limiters and Cryogenic Electrical Machines

Content

Title variants

Languages of publication

EN

Abstracts

EN
Materials of the Y-Ba-Cu-O (melt-textured YBa_{2}Cu_{3}O_{7-δ}-based materials or MT-YBCO) and Mg-B-O (MgB_{2}-based materials) systems with high superconducting performance, which can be attained due to the formation of regularly distributed nanostructural defects and inhomogeneities in their structure can be effectively used in cryogenic technique, in particular in fault current limiters and electrical machines (electromotors, generators, pumps for liquid gases, etc.). The developed processes of high-temperature (900-800°C) oxygenation under elevated pressure (16 MPa) of MT-YBCO and high-pressure (2 GPa) synthesis of MgB_{2}-based materials allowed us to attain high superconductive (critical current densities, upper critical fields, fields of irreversibility, trapped magnetic fields) and mechanical (hardness, fracture toughness, Young modulus) characteristics. It has been shown that the effect of materials properties improvement in the case of MT-YBCO was attained due to the formation of high twin density (20-22 μm^{-1}), prevention of macrocracking and reduction (by a factor of 4.5) of microcrack density, and in the case of MgB_{2}-based materials due to the formation of oxygen-enriched as compared to the matrix phase fine-dispersed Mg-B-O inhomogeneities as well as inclusions of higher borides with near-MgB_{12} stoichiometry in the Mg-B-O matrix (with 15-37 nm average grain sizes). The possibility is shown to obtain the rather high T_{c} (37 K) and critical current densities in materials with MgB_{12} matrix (with 95% of shielding fraction as calculated from the resistant curve).

Keywords

Contributors

author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya St., Kiev, 04074, Ukraine
author
  • Institut für Photonische Technologien, Albert-Einstein-Str. 9, Jena, 07745, Germany
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya St., Kiev, 04074, Ukraine
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya St., Kiev, 04074, Ukraine
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya St., Kiev, 04074, Ukraine
author
  • Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
author
  • Budapest University of Technology and Economics, Egry Jozsef u. 18, 1111 Budapest, Hungary
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya St., Kiev, 04074, Ukraine
author
  • H.C. Starck GmbH, Goslar 38642, Germany
author
  • Atomic Institute of the Austrian Universities, 1020 Vienna, Austria
author
  • Atomic Institute of the Austrian Universities, 1020 Vienna, Austria
author
  • Université de Poitiers, NRS/Laboratoire PHYMAT, UMR 6630 CNRS-Université de Poitiers SP2MI, Poitiers, France
author
  • Université de Poitiers, NRS/Laboratoire PHYMAT, UMR 6630 CNRS-Université de Poitiers SP2MI, Poitiers, France
author
  • CNRS/CRETA, Grenoble, 38042, CEDEX 9, France
author
  • Institut für Photonische Technologien, Albert-Einstein-Str. 9, Jena, 07745, Germany
author
  • Institut für Photonische Technologien, Albert-Einstein-Str. 9, Jena, 07745, Germany
author
  • Moscow State Aviation Institute (Technical University), Volokolamskoe Shosse, 4, 125993 Moscow, Russia
  • Institut für Photonische Technologien, Albert-Einstein-Str. 9, Jena, 07745, Germany
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya St., Kiev, 04074, Ukraine
author
  • Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
  • Institut für Photonische Technologien, Albert-Einstein-Str. 9, Jena, 07745, Germany
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya St., Kiev, 04074, Ukraine
author
  • Institute for Problems of Material Science of the National Academy of Sciences of Ukraine, Ukraine
author
  • Institut für Photonische Technologien, Albert-Einstein-Str. 9, Jena, 07745, Germany
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya St., Kiev, 04074, Ukraine
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya St., Kiev, 04074, Ukraine
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya St., Kiev, 04074, Ukraine
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya St., Kiev, 04074, Ukraine
author
  • Budapest University of Technology and Economics, Egry Jozsef u. 18, 1111 Budapest, Hungary
author
  • Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodskaya St., Kiev, 04074, Ukraine

References

  • 1. A.P. Malozemoff, Ceramic Materials in Energy System for Sustainable Development, Ed. L.J. Gauckler, World Academy of Ceramics, Techna Group, 2009, p. 279
  • 2. M. Murakami, Int. J. Appl. Ceram. Technol. 4, 225 (2007)
  • 3. I. Vajda, L. Farkas, Advanced Studies on Superconducting Engineering, 2nd ed., Supertech Laboratory of Budapest University of Technology and Economics, Budapest 2004, p. 308
  • 4. L.K. Kovalev, K.V. Ilushin, K.L. Kovalev, V.T. Penkin, V.N. Poltavets, S.M.-A. Koneev, I I. Akimov, W. Gawalek, B. Oswald, G. Krabbes, Physica C 386, 419 (2003)
  • 5. L.K. Kovalev, K.V. Ilushin, V.T. Penkin, K.L. Kovalev, V.N. Poltavets, S.M.A. Koneyev, K.A. Modestov, W. Gawalek, T.A. Prikhna, I.I. Akimov, J. Phys., Conf. Series 43, 792 (2006)
  • 6. A.S. Parikh, B. Meyer, K. Salama, Supercond. Sci. Technol. 7, 455 (1994)
  • 7. Handbook of Superconducting Materials, Vol. 1, Superconductivity, Materials and Processes, Eds. D.A. Cardwell, D.S. Ginley, Institute of Physics Publ., Bristol 2003, p. 927
  • 8. Melt-Processed High-Temperature Superconductors, Ed. M. Murakami, Superconductivity Research Laboratory, ISTEC, Japan, World Sci., Singapore 1992, p. 361
  • 9. C.B. Eom, M.K. Lee, J.H. Choi, L.J. Belenky, X. Song, L.D. Cooley, M.T. Naus, S. Patnaik, J. Jiang, M. Rikel, A. Polyanskii, A. Gurevich, X.Y. Cai, S.D. Bu, S.E. Babcock, E.E. Hellstrom, D.C. Larbalestier, N. Rogado, K.A. Regan, M.A. Hayward, T.He, J.S. Slusky, K. Inumaru, M.K. Haas, R.J. Cava, Nature 411, 558 (2001)
  • 10. J. Plain, T. Puig, F. Sandiumenge, X. Obradors, J. Rabier, Phys. Rev. B 65, 104526 (2002)
  • 11. T.A. Prikhna, X. Chaud, W. Gawalek, A. Joulain, Ya.M. Savchuk, N.V. Sergienko, V.E. Moshchil, T. Habisreuther, J. Rabier , S.N. Dub, V.S. Melnikov, D. Litzkendorf, P.A. Nagorny, J. Bierlich, V.B. Sverdun, I. Vajda, J. Kosa, J. Phys. 97, 012023 (2008)
  • 12. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, 115 (2001)
  • 13. X.Z. Liao, A. Serquis, Y.T. Zhu, J.Y. Huang, L. Civale, D.E. Peterson, F.M. Mueller, H.F. Xu, J. Appl. Phys. 93, 6208 (2003)
  • 14. T.A. Prikhna, W. Gawalek, Ya.M. Savchuk, T. Habisreuther, M. Wendt, N.V. Sergienko, V.E. Moshchil, P. Nagorny, Ch. Schmidt, J. Dellith, U. Dittrich, D. Litzkendorf, V.S. Melnikov V.B. Sverdun, Supercond. Sci. Technol. 20, S257 (2007)
  • 15. T.A. Prikhna, W. Gawalek, Y.M. Savchuk, A.V. Kozyrev, M. Wendt, V.S. Melnikov, V.Z. Turkevich, N.V. Sergienko, V.E. Moshchil, J. Dellith, C. Shmidt, S.N. Dub, T. Habisreuther, D. Litzkendorf, P.A. Nagorny, V.B. Sverdun, H.W. Weber, M. Eisterer, J. Noudem, U. Dittrich, IEEE Trans. Appl. Supercond. 19, 2780 (2009)
  • 16. E.W. Collings, M.D. Sumption, M. Bhatia, M.A. Susner, S.D. Bohnenstiehl, Supercond. Sci. Technol. 21, 103001 (2008)
  • 17. T. Prikhna, W. Gawalek, V. Moshchil, A. Surzhenko, A. Kordyuk, S. Dub, V. Melnikov, D. Litzkendorf, A. Plyushchay, N.Sergienko, A. Koval', S. Bokoch, T. Habisreuther, Physica C 354, 333 (2001)
  • 18. K. Salama, O.F. Lee, Supercond. Sci. Technol. 7, 177 (1994)
  • 19. T.A. Prikhna, Fiz. Niz. Temp. 32, 661 (2006)
  • 20. T. Prikhna, N. Novikov, Ya. Savchuk, W. Gawalek, N. Sergienko, V. Moshchil, M. Wendt, V. Melnikov, S. Dub,T. Habisreuther, C. Schmidt, J. Dellith, P. Nagorny, NATO Sci. Series. II. Math. Phys. Chem. 200, 81 (2005)
  • 21. D. Litzkendorf, T. Habisreuther, J. Bierlich, O. Surzhenko, M. Zeisberger, S. Kracunovska, W. Gawalek, Supercond. Sci. Technol. 18, S206 (2005)
  • 22. X. Chaud, D. Bourgault, D. Chateigner, P. Diko, L. Porcar, A. Villaume, A. Sulpice R.Tournier, Supercond. Sci. Technol. 19, S590 (2006)
  • 23. T.A. Prikhna, V.S. Moshchil, V.S. Melnikov, P.A. Nagorny, M.G. Vasilenko-Sheremetiev, S.K. Tolpigo, V.V. Kovilyaev, N.P. Pshenzova, Fiz. Tekh. Vys. Davleniy 1, 84 (1991) (in Russian)
  • 24. W. Assmus, W. Schmidbauer, Supercond. Sci. Technol. 8, 555 (1993)
  • 25. T.A. Prikhna, A.V. Vlasenko, S.N. Dub, V.S. Mel'nikov, Ya.M. Savchuk, V.E. Moshchil', N.V. Sergienko, P.A. Nagornyi, V.B. Sverdun, X. Chaud, W. Gawalek, D. Litzkendorf, T. Habisreuther, J. Rabier, A. Joulain, J. Superhard Mater. 30, 215 (2008)
  • 26. X. Chaud, T. Prikhna, Ya. Savchuk, A. Joulain, E. Haanappel, P. Diko, L. Porcar, M. Soliman, Mater. Sci. Eng. B 151, 53 (2008)
  • 27. T. Prikhna, W. Gawalek, Y. Savchuk, N. Sergienko, M. Wendt, T. Habisreuther, V. Moshchil, A. Mamalis, J. Noudem, X. Chaud, V. Turkevich, P. Nagorny, A. Kozyrev, J. Dellith, C. Shmidt, D. Litzkendorf, U. Dittrich, S. Dub, J. Optoelectron. Adv. Mater. 10, 1017 (2008)
  • 28. B. Birajdar, N. Peranio, O. Eibl, Supercond. Sci. Technol. 21, 073001 (2008)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv117z101kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.