PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 117 | 6 | 911-916
Article title

Spatial Structure of Emission Intensity in Capacitive RF Discharge of He:Ne Mixture at Moderate Pressures

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The spatial structure of emission intensity in a capacitive radio frequency discharge at 13.56 Mhz in He:Ne mixture with total pressures of more than hundreds of Pascal was studied using the optical emission spectroscopy technique. The spectral line distributions at the axis of the discharge gap vs. the distance between two plane aluminium electrodes were found for: the line of 585.2 nm (Ne) and 447.15 nm (He) in 5:1 ratio of the mixture at pressure of 800 Pa for different driving powers 10, 20, and 30 W; the line of 585.2 nm in the range of 733-4393 Pa at power of 20 W in 10:1 ratio of the mixture; lines of 632.8 + 633.4 nm (Ne) at ratios of 5:1, 10:1, 15:1, a power of 20 W, under pressure of 1400 Pa; lines of 585.2 nm, 632.8 + 633.4 nm, 640.2 nm, and 703.2 nm (Ne) and 447.15 nm, 706.52 nm (He), at a pressure of 1467 Pa and a power of 20 W in ratio 10:1. Under chosen operational conditions, the measured relative spectral intensities for all studied lines in the middle of the discharge gap show the existence of the α-regime in the RF discharge. The dc-bias voltage vs. the total pressure and the dc-bias voltage-power characteristics were obtained at certain conditions.
Keywords
EN
Year
Volume
117
Issue
6
Pages
911-916
Physical description
Dates
published
2010-06
received
2009-12-03
(unknown)
2010-04-21
References
  • 1. D. Hall, C. Hill, in: Handbook of Molecular Lasers, Ed. P.K. Cheo, Dekker Inc., New York 1987, Ch. 3
  • 2. Y.P. Raizer, M.N. Shneider, N.A. Yatsenko, Radio-Frequency Capacitive Discharge, CRC Inc. London, 1995, Ch. 1,2
  • 3. A. Melzer, R. Flohr, A. Piel, Plasma Sources Sci. Technol. 4, 424 (1995)
  • 4. V.V. Azharonok, I.I. Filatova, V.D. Shimanovich, V.N. Ochkin, L.N. Orlov, J.I. Necrashevich, V.V. Nevdakh, Lebedev Physical Institute, Preprint 37, (2003)
  • 5. Ph. Belenguer, J.P. Boeuf, Phys. Rev. A 41, 4447, (1990)
  • 6. V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Phys. Rev. Lett. 68, 40 (1992)
  • 7. P.P. Vitruk, H.J. Baker, D.R. Hall, J. Phys. D; Appl. Phys. 25, 1767 (1992)
  • 8. S.A. Starostin, K.J. Boller, P.J. Peters, Y.B. Udaloo, I.V. Kochetov, A.P. Napartovich, Plasma Phys. Rep. 28, 68 (2002)
  • 9. I. Odrobina, M. Kando, Plasma Sources Sci. Technol. 5, 517 (1996)
  • 10. Z.Lj. Petrovic, S. Bzenic, J. Jovanovic, S. Djurovic, J. Phys. D; Appl. Phys. 28, 2287 (1995)
  • 11. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley, New York 1994
  • 12. V.A. Godyak, R.B. Piejak, N.A. Sternberg, IEEE Trans. Plasma Sci. 21, 378 (1993)
  • 13. M.M. Turner, Phys. Rev. Lett. 75, 1312 (1995)
  • 14. S.V. Berezhnoi, I.D. Kaganovich, M. Misina, A. Bogarets, R. Gijbels, IEEE Trans. Plamsa Sci. 27, 1339 (1999)
  • 15. S. Al-Hawat, IEEE Trans. Plasma Sci. 28, 1682 (2000)
  • 16. A. Bogaerts, E. Neyts, R. Gijbels, J. van der Mullen, Spectrochim. Acta B 57, 609 (2002)
  • 17. L.N. Orlov, V.V. Azharonok, J. Appl. Spectrosc. 66, 826 (1999)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv117n605kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.