PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 117 | 3 | 445-448
Article title

Conformal Invariance and Conserved Quantity of Hamilton System under Second-Class Mei Symmetry

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Conformal invariance and conserved quantities of Hamilton system under second-class Mei symmetry are studied. The single-parameter infinitesimal transformation group and infinitesimal transformation vector of generator are introduced. The definitions about conformal invariance of Hamilton function and conformal invariance of Hamilton system under second-class Mei symmetry are given. The relationship between the system's conformal invariance and Mei symmetry are discussed. The necessary and sufficient condition that the system's conformal invariance would be Mei symmetry is deduced. The system's corresponding conserved quantities are obtained with the aid of a structure equation which is satisfied by the gauge function. Lastly, an example is provided to illustrate the application of the result.
Keywords
EN
Publisher

Year
Volume
117
Issue
3
Pages
445-448
Physical description
Dates
published
2010-03
received
2009-10-28
Contributors
author
  • College of Science, Hangzhou Normal University, Hangzhou 310018, China
References
  • 1. A.E. Noether, Nachr. Akad. Wiss. Göttingen Math. Phys. KI II, 235 (1918)
  • 2. Z.P. Li, Classical and Quantal Dynamics of Constrained Systems and Their Symmetry Properties, Beijing Polytechnic University Press, Beijing 1993
  • 3. Z.P. Li, Constrained Hamiltonian Systems and Their Symmetry Properties, Beijing Polytechnic University Press, Beijing 1999
  • 4. F.X. Mei, Symmetries and Conserved Quantities of Constrained Mechanical Systems, Beijing Institute of Technology Press, Beijing 2004
  • 5. M. Lutzky, J. Phys. A 12, 973 (1979)
  • 6. F.X. Mei, J. Beijing Inst. Tech. 9, 120 (2000)
  • 7. S.K. Luo, Acta Phys. Sin. 52, 712 (2003)
  • 8. H. Li, J.H. Fang, Acta Phys. Sin. 53, 2807 (2004)
  • 9. Y. Zhang, W.K. Ge, Acta Phys. Sin. 54, 1464 (2005)
  • 10. Y. Zhang, Acta Phys. Sin. 54, 2980 (2005)
  • 11. Z.M. Lou, Acta Phys. Sin. 54, 1015 (2005)
  • 12. S.W. Zheng, L.Q. Jia, H.S. Yu, Chin. Phys. 15, 1399 (2006)
  • 13. S.L. Gu, H.B. Zhang, Acta Phys. Sin. 55, 5594 (2006)
  • 14. W.K. Ge, Acta Phys. Sin. 56, 1 (2007)
  • 15. S.W. Zheng, L.Q. Jia, Acta Phys. Sin. 56, 661 (2007)
  • 16. Y. Zhang, Y. Xue, Acta Phys. Sin. 50, 816 (2001)
  • 17. S.K. Luo, L.Q. Jia, J.L. Cai, Chin. Phys. 12, 841 (2003)
  • 18. S.K. Luo, L.Q. Jia, Commun. Theor. Phys. 40, 265 (2003)
  • 19. F.X. Mei, Acta Phys. Sin. 52, 1048 (2003)
  • 20. Y. Zhang, Acta Phys. Sin. 52, 1326 (2003)
  • 21. J.L. Fu, L.Q. Chen, Mech. Res. Commun. 31, 9 (2004)
  • 22. S.K. Luo, Acta Phys. Sin. 53, 5 (2004)
  • 23. R.W. Liu, L.Q. Chen, Chin. Phys. 13, 1615 (2004)
  • 24. J.L. Fu, L.Q. Chen, F.P. Xie, Chin. Phys. 13, 1611 (2004)
  • 25. S.K. Luo, Acta Phys. Sin. 52, 1 (2003)
  • 26. J.H. Fang, Y. Peng, Y.P. Liao, Acta Phys. Sin. 54, 496 (2005)
  • 27. J.H. Fang, Y.P. Liao, Y. Peng, Acta Phys. Sin. 54, 500 (2005)
  • 28. L.Q. Jia, S.W. Zheng, Acta Phys. Sin. 55, 3829 (2006)
  • 29. J.H. Fang, N. Ding, P. Wang, Acta Phys. Sin. 56, 3039 (2007)
  • 30. J.L. Cai, F.X. Mei, Acta Phys. Sin. 57, 5369 (2008)
  • 31. J.L. Cai, Chin. Phys. Lett. 25, 1523 (2008)
  • 32. J.L. Cai, S.K. Luo, F.X. Mei, Chin. Phys. B 17, 3170 (2008)
  • 33. J.L. Cai, Acta Phys. Pol. A 115, 854 (2009)
  • 34. J.L. Cai, Acta Phys. Sin. 58, 22 (2009)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv117n303kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.