Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 117 | 2 | 397-402

Article title

Initial Phases of DNA Rehydration by NMR and Sorption Isotherm

Content

Title variants

Languages of publication

EN

Abstracts

EN
T*he initial stages of rehydration of salmon sperm deoxyribonucleic acid (DNA) lyophilizates were observed using hydration kinetics, sorption isotherm, and high power proton relaxometry (at 30 MHz). T*he hydration kinetics reveals (i) a very tightly bound water not removed by incubation over silica gel (A_0^{h} = 0.057 ± 0.010), (ii) a tightly bound water [saturating at A_1^{h} = 0.149 ± 0.007, hydration time t_1^{h} = (0.27 ± 0.08) h], a tightly bound water (iii) [saturating at A_2^{h} = 0.694 ± 0.039, with the hydration time t_2^{h} = (9.8 ± 3.2) h], and (iv) a loosely bound water fraction for the samples hydrated at p/p_{0} ≥ 76% [with the hydration time t_3^{h} = (44 ± 14) h, and the contribution progressively increasing with the air humidity]. For the hydration at p/p_{0} = 100%, after t_{0} = (244 ± 22) h of incubation the swelling process begins. T*he amount of additional water uptake at swelling depended on the macrostructure of the sample. Sorption isotherm is sigmoidal in form and is fitted well by the Dent model with the mass of water saturating primary binding sites Δ M/m_{0} = 0.114. Proton free induction decay is a superposition of the immobilized proton signal (Gaussian, with T*_{2S} ≈ 20 μs) and two liquid signal components coming from tightly bound (T*_{2L_1} ≈ 100 μs, with the mass saturating at Δ m/m_{0} = 0.111 ± 0.044) and loosely bound water fraction (with the amplitude proportional to the mass of water added).

Keywords

EN

Year

Volume

117

Issue

2

Pages

397-402

Physical description

Dates

published
2010-02

Contributors

author
  • Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow, Poland
author
  • Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow, Poland
author
  • Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow, Poland
author
  • Department of Physics and Applied Computer Sciences, AGH University of Science and Technology, Cracow, Poland

References

  • 1. J. Grote, J. Hagen, J. Zetts, R. Nelson, D. Diggs, M. Stone, P. Yaney, E. Heckman, C. Zhang, W. Steier, A. Jen, L. Dalton, N. Ogata, M. Curley, S. Clarson, F. Hopkins, J. Phys. Chem. B 108, 8584 (2004)
  • 2. H. Fink, H. Schmid, E. Ermantraut, T. Schulz, J. Opt. Soc. Am. A 14, 2168 (1997)
  • 3. B. Singh, M. Sariciftci, J. Grote, F.K. Hopkins, J. Appl. Phys. 100, 024514 (2006)
  • 4. M. Falk, K.A. Hartman, Jr., R.C. Lord, J. Am. Chem. Soc. 85, 387 (1963)
  • 5. S.L. Lee, P.G. Debenedetti, J.R. Errington, B.A. Pethica, D.J. Moore, J. Phys. Chem. B 108, 3098 (2004)
  • 6. W. Węglarz, H. Harańczyk, J. Phys. D, Appl. Phys. 33, 1909 (2000)
  • 7. R.W. Dent, Textile Res. J. 47, 145 (1977)
  • 8. A.J. Hailwood, S. Horrobin, Trans. Faraday Soc. B 42, 84 (1946)
  • 9. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)
  • 10. W. Derbyshire, M. Van, Den Bosch, D. Van Dusschoten, W. MacNaughtan, I.A. Farhat, M.A. Hemminga, J.R. Mitchell, J. Magn. Res. 168, 278 (2004)
  • 11. H. Harańczyk, M. Bacior, M.A. Olech, Antarctic Sci. 20, 527 (2008)
  • 12. H. Harańczyk, M. Bacior, J. Jamróz, M. Jemioła-Rzemińska, K. Strzałka, Acta Phys. Polon. A 115, 521 (2009)
  • 13. H. Harańczyk, A. Leja, K. Strzałka, Acta Phys. Polon. A 109, 389 (2006)
  • 14. H. Harańczyk, W.P. Węglarz, S. Sojka, Holzforschungg 53, 299 (1999)
  • 15. H. Harańczyk, K. Strzałka, G. Jasiński, K. Mosna-Bojarska, Coll. Surf. A 115, 47 (1996)
  • 16. H. Harańczyk, S. Gaździński, M.A. Olech, New Phytologistg 138, 191 (1998)
  • 17. H. Harańczyk, S. Gaździński, M. Olech, Freezing protection mechanism in Cladonia mitisg as observed by proton magnetic relaxation. in: New Aspects in Cryptogamic Research, Contribution in Honour of Ludger Kappen. Bibl. Lichenol. 75, 265 (2000)
  • 18. H. Harańczyk, A. Pietrzyk, A. Leja, M.A. Olech, Acta Phys. Polon. A 109, 411 (2006)
  • 19. H. Harańczyk, M. Bacior, P. Jastrzębska, M.A. Olech, Acta Phys. Polon. A 115, 516 (2009)
  • 20. N. Funduk, G. Lahajnar, L. Miljković, S. Skočajić, D.W. Kydon, L.J. Schreiner, M.M. Pintar, Zobozdrav. Vestn. 41 (Suppl. 1), 139 (1986)
  • 21. W. Węglarz, H. Peemoeller, A. Rudin, Polym. Sci. B ( Polymer Physics) 38, 2487 (2000)
  • 22. H. Harańczyk, K.G. Soga, R.J. Rumm, M.M. Pintar, Magn. Res. Imag. 9, 723 (1991)
  • 23. J.R. Zimmerman, W.E. Brittin, J. Phys. Chem. 61, 1328 (1957)
  • 24. A. Timur, J. Petroleum Technol. 21, 775 (1969)
  • 25. T.J. Wydrzynski, S.B. Marks, P.G. Schmidt, H.S. Govindjee, Gutowsky, Biochemistryg 17, 2155 (1978)
  • 26. H. Harańczyk, A. Leja, M. Jemioła-Rzemińska, K. Strzałka, Actag Phys. Polon. A 115, 526 (2009)
  • 27. A. North, A. Rich, Natureg 191, 1242 (1961)
  • 28. R. Greenall, C. Nave, W. Fuller, J. Mol. Biol. 305, 669 (2001)
  • 29. S. Zimmerman, B. Pheiffer, Proc. Natl. Acad. Sci. USA 76, 2703 (1979)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv117n258kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.