Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Atomic force microscopy measurements and force theory calculations using the Lifshitz theory show that van der Waals/Casimir dispersive forces have a strong dependence on surface roughness and material optical properties. It is found that at separations below 100 nm the roughness effect is manifested through a strong deviation from the normal scaling of the force with separation distance. Moreover, knowledge of precise optical properties of metals is shown to be very important for accurate force predictions rather than referring to idealized defect free material models. Finally, we compare the van der Waals/Casimir forces to capillary adhesive forces in order to illustrate their significance in stiction problems.
Discipline
- 85.85.+j: Micro- and nano-electromechanical systems (MEMS/NEMS) and devices
- 78.68.+m: Optical properties of surfaces
- 68.37.Ps: Atomic force microscopy (AFM)
- 47.55.nb: Capillary and thermocapillary flows
- 68.55.-a: Thin film structure and morphology(for methods of thin film deposition, film growth and epitaxy, see 81.15.-z)
Journal
Year
Volume
Issue
Pages
379-383
Physical description
Dates
published
2010-02
Contributors
author
- Materials innovation institute M2i and Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
author
- Materials innovation institute M2i and Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
References
- 1. H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948). For initial measurements of the Casimir effect see: M.J. Sparnaay, Physica (Utrecht)g 24, 751 (1958); P.H.G.M. van Blockland, J.T.G. Overbeek, J. Chem. Soc. Faraday Trans. 74, 2637 (1978)
- 2. F.M. Serry, D. Walliser, G.J. Maclay, J. Appl. Phys. 84, 2501 (1997); H.B. Chan, V.A. Aksyuk, R.N. Kleiman, D.J. Bishop, F. Capasso, Scienceg 291, 1941 (2001); G. Palasantzas, J.Th.M. De Hosson, Phys. Rev. B 72, 115426 (2005); ibid Phys. Rev. B 72, 121409 (2005); G. Palasantzas, J.Th.M. De Hosson, Surf. Sci. 600, 1450 (2006)
- 3. R. Onofrio, New J. Phys. 8, 237 (2006)
- 4. S.K. Lamoreaux, Phys. Rev. Lett 78, 5 (1997); S.K. Lamoreaux, Phys. Rev. Lett. 83, 3340 (1999); S.K. Lamoreaux, Phys. Today, (2007)
- 5. B.W. Harris, F. Chen, U. Mohideen, Phys. Rev. A 62, 052109 (2000)
- 6. E.M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1956) [ Sov. Phys. JETP 2, 73 (1956)]; I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Advances in Physics 38, 165 (1961); E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part 2, Pergamon Press, Oxford 1980
- 7. I. Pirozhenko, A. Lambrecht, V.B. Svetovoy, New J. Phys. 8, 238 (2006)
- 8. V.B. Svetovoy, P.J. van Zwol, G. Palasantzas, J.Th.M. De Hosson, Phys. Rev. B 77, 035439 (2008); P.J. van Zwol, G. Palasantzas, J.Th.M. DeHosson, Appl. Phys. Lett. 91, 144108 (2007)
- 9. P.A. Maia-Neto, A. Lambrecht, S. Reynaud, Phys. Rev. A 72, 012115 (2005); P.A. Maia-Neto, A. Lambrecht, S. Reynoud, Europhys. Lett. 69, 924 (2005)
- 10. P.J. van Zwol, G. Palasantzas, J.Th.M. De Hosson, to appear in Phys. Rev. B (2008); P.J. van Zwol, G. Palasantzas, M. van de Schootbrugge, J.Th.M. De Hosson, Appl. Phys. Lett. 92, 054101 (2008)
- 11. G. Palasantzas, Phys. Rev. E 56, 1254 (1997)
- 12. P. Meakin, Phys. Rep. 235, 1991 (1994); J. Krim, G. Palasantzas, Int. J. Mod. Phys. B 9, 599 (1995)
- 13. G. Palasantzas, Phys. Rev. B 48, 14472 (1993); 49, 5785 (1994); G. Palasantzas, J. Krim, Phys. Rev. Lett. 73, 3564 (1994)
- 14. A. Ata, Y.I. Rabinovich, R.K. Singh, J. Adhesion, Sci. Technol. 16, 337 (2002)
- 15. P.J. van Zwol, G. Palasantzas, J.Th.M. de Hosson, Phys. Rev. E 78, 031606 (2008); P.J. van Zwol, G. Palasantzas, J.Th.M. DeHosson, Appl. Phys. Lett. 91, 101905 (2007)
- 16. M.E. Abdelsalam, P.N. Bartlett, T. Kelf, J. Baumberg, Langmuirg 21, 1753 (2005)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv117n254kz