PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 117 | 2 | 369-373
Article title

Optical Investigation of ZnO Nanowires

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this study we report the application of synchrotron X-ray fluorescence, photoluminescence and Raman scattering techniques to the analysis of the incorporation of impurities in unintentionally doped ZnO nanowires. Highly ordered one-dimensional ZnO arrays were fabricated by an oxidation process of Zn metal electrodeposited in nanoporous anodic alumina template. X-ray fluorescence data show the contribution of residual elements into the ZnO nanowires growth. A rough analytical quantification of the main light and heavy chemical contents derives impurity concentrations below 1%. The optical efficiency of ZnO nanowires is strongly affected by non-radiative centers up to temperatures as low as 100 K. The photoluminescence was found to be totally dominated by optical transitions associated with the anodic alumina template. Finally, the Raman scattering provides no evidence of local vibrational modes or secondary phases, but it shows the unambiguous signature of the ZnO hexagonal phase.
Keywords
Contributors
  • European Synchrotron Radiation Facility, Experiments Division, 38043 Grenoble, France
  • Materials Science Institute, CSIC-Madrid, 28049 Cantoblanco, Spain
author
  • European Synchrotron Radiation Facility, Experiments Division, 38043 Grenoble, France
author
  • Department of Applied Physics, Valencia University, 46100 Burjasot, Spain
author
  • Department of Applied Physics, Valencia University, 46100 Burjasot, Spain
  • Materials Science Institute, CSIC-Madrid, 28049 Cantoblanco, Spain
author
  • European Synchrotron Radiation Facility, Experiments Division, 38043 Grenoble, France
author
  • European Synchrotron Radiation Facility, Experiments Division, 38043 Grenoble, France
author
  • European Synchrotron Radiation Facility, Experiments Division, 38043 Grenoble, France
author
  • Materials Science Institute, CSIC-Madrid, 28049 Cantoblanco, Spain
author
  • Materials Science Institute, CSIC-Madrid, 28049 Cantoblanco, Spain
References
  • 1. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)
  • 2. L. Schmidt-Mendea, J.L. MacManus-Driscolla, Materials Todayg 10, 40 (2007)
  • 3. Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
  • 4. J. Cembrero, A. Elmanouni, B. Hartiti, M. Mollar, B. Mari, Thin Solid Filmsg 451-452, 198 (2004)
  • 5. Z.F. Liu, Z.G. Jin, J.J. Qiu, X.X. Liu, W.B. Wu, W. Li, Semicond. Sci. Technol. 21, 60 (2006)
  • 6. T. Dietl, J. Phys., Condens. Matterg 19, 165204 (2007)
  • 7. S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, T. Dietl, Nature Materialsg 6, 440 (2007)
  • 8. J. Philip, A. Punnoose, B.I. Kim, K.M. Reddy, S. Layne, J.O. Holmes, B. Satpati, P.R. Leclair, T.S. Santos, J.S. Moodera, Nature Materialsg 5, 298 (2006)
  • 9. H. Masuda, K. Fukuda, Scienceg 268, 1466 (1995)
  • 10. M. Vázquez, K. Nielsch, P. Vargas, J. Velazquez, D. Navas, K. Pirota, M. Hernandez-Velez, E. Vogel, J. Cartes, R.B. Wehrspohn, U. Gosele, Physica B 343, 395 (2004)
  • 11. M. Hernández-Vélez, Thin Solid Filmsg 495, 51 (2006)
  • 12. A. Somogyi, M. Drakopoulos, L. Vincze, B. Vekemans, C. Camerani, K. Janssens, A. Snigirev, F. Adams, X-ray Spectrometry 30, 242 (2001)
  • 13. B. Lengeler, C. Schroer, J. Tümmler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, M. Drakopoulos, J. Synchrotron Rad. 6, 1153 (1999)
  • 14. M.K.M. Kocsis, A. Somogyi, J. Synchrotron Rad. 10, 187 (2003)
  • 15. G. Martinez-Criado, A. Somogyi, S. Ramos, J. Campo, R. Tucoulou, M. Salome, J. Susini, M. Hermann, M. Eickhoff, M. Stutzmann, Appl. Phys. Lett. 86, 131927 (2005)
  • 16. Handbook of X-Ray Spectrometry, Practical Spectroscopy Series 29, Ed. R.E. Van Grieken, A.A. Markowicz, Dekker, New York 2002
  • 17. Microscopic X-Ray Fluorescence Analysis, Ed. K.H.A. Janssens, F.C.V. Adams, A. Rindby (2000)
  • 18. E. Winkler, R.D. Zysler, M. Vasquez-Mansilla, D. Fiorani, Phys. Rev. B 72, 132409 (2005)
  • 19. V.A. Solé, E. Papillon, M. Cotte, Ph. Walter, J. Susini, Spectrochimica Acta Part B 62, 63 (2007)
  • 20. J.B. Cui, U.J. Gibson, Appl. Phys. Lett. 87, 133108 (2005)
  • 21. B.D. Yao, Y.F. Chan, N. Wanga, Appl. Phys. Lett. 81, 757 (2002)
  • 22. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)
  • 23. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)
  • 24. S.A. Studenikin, M. Cocivera, J. Appl. Phys. 91, 5060 (2002)
  • 25. Z. Li, K. Huang, J. Phys., Condens. Matterg 19, 216203 (2007)
  • 26. W.L. Xu, M.J. Zheng, S. Wu, W.Z. Shen, Appl. Phys. Lett. 85, 4364 (2004)
  • 27. K. Huang, L. Pu, Y. Shi, P. Han, R. Zhang, Y.D. Zheng, Appl. Phys. Lett. 89, 201118 (2006)
  • 28. S. Liu, L. Zhang, Y. Fan, J. Luo, P. Zhang, L. An, Appl. Phys. Lett. 89, 051911 (2006)
  • 29. W. Gebicki, K. Osuch, C. Jastrzebski, Z. Golacki, M. Godlewski, Superlatt. Micr. 38, 428 (2005)
  • 30. J. Yu, H. Xing, Q. Zhao, H. Mao, Y. Shen, J. Wang, Z. Lai, Z. Zhu, Sol. Stat. Commun. 38, 502 (2006)
  • 31. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003)
  • 32. H.T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S.X. Li, E.E. Haller, Appl. Phys. Lett. 82, 2023 (2003)
  • 33. V.V. Ursaki, I.M. Tiginyanu, V.V. Zalamai, E.V. Rusu, G.A. Emelchenko, V.M. Masalov, E.N. Samarov, Phys. Rev. B 70, 155204 (2004)
  • 34. B. Kumar, H. Gong, S.Y. Chow, S. Tripathy, Y. Hua, Appl. Phys. Lett. 89, 071922 (2006)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv117n252kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.