Preferences help
enabled [disable] Abstract
Number of results
2010 | 117 | 2 | 286-292
Article title

Study of the Local Environment of Mn Ions Implanted in GaSb

Title variants
Languages of publication
The first attempts to establish an implantation process leading to formation of ferromagnetic inclusions inside the GaSb matrix are presented. Gallium antimonide containing ferromagnetic MnSb precipitations is considered as a promising material for novel spintronic applications. It is possible to obtain such inclusions during the molecular beam epitaxy (MBE) growth. However, for commercial application it would be also important to find an optimal way of producing this kind of inclusions by Mn ions implantation. In order to achieve this goal, several parameters of implantation and post annealing procedures were tested. The ion energy was kept at 10 keV or 150 keV and four different ion doses were applied, as well as various annealing conditions. The analysis of X-ray absorption spectra allowed to estimate the local atomic order around Mn atoms. Depending on the implantation energy and annealing processes, the manganese oxides or manganese atoms located in a heavily defected GaSb matrix were observed. The performed analysis helped in indicating the main obstacles in formation of MnSb inclusions inside the GaSb matrix by Mn ion implantation.
  • Institute of Physics PAS, al. Lotników 32/46, 02-668, Warsaw, Poland
  • Institute of Physics PAS, al. Lotników 32/46, 02-668, Warsaw, Poland
  • Institute of Physics PAS, al. Lotników 32/46, 02-668, Warsaw, Poland
  • Institute of Physics PAS, al. Lotników 32/46, 02-668, Warsaw, Poland
  • Institute of Physics PAS, al. Lotników 32/46, 02-668, Warsaw, Poland
  • Physics Department, Uppsala University, Box 530, 75121 Uppsala, Sweden
  • 1. A. Chanda, H.P. Lenka, C. Jacob, Appl. Phys. A 94, 89 (2009)
  • 2. O.D.D. Couto, Jr., M.J.S.P. Brasil, F. Iikawa, C. Giles, C. Adriano, J.R.R. Bortoleto, M.A.A. Pudenzi, H.R. Gutierrez, I. Danilov, Appl. Phys. Lett. 86, 071906 (2005)
  • 3. S.L. Song, N.F. Chen, J.P. Zhou, Z.G. Yin, Y.L. Li, S.Y. Yang, Z.K. Liu, J. Cryst. Growthg 264, 31 (2004)
  • 4. M.A. Scarpulla, O.D. Dubon, K.M. Yu, O. Monteiro, M.R. Pillai, M.J. Aziz, M.C. Ridgway, Appl. Phys. Lett. 82, 1251 (2003)
  • 5. C. Chen, M. Cai, X. Wang, S. Xu, M. Zhang, X. Ding, Y. Sun, J. Appl. Phys. 87, 5636 (2000)
  • 6. J. Yang, N.F. Chen, Z. Liu, S. Yang, C. Chai, M. Liao, H. He, J. Cryst. Growthg 234, 359 (2002)
  • 7. K. Ando, A. Chiba, H. Tanoue, Appl. Phys. Lett. 73, 387 (1998)
  • 8. P.J. Wellmann, J.M. Garcia, J.L. Feng, P.M. Petroff, Appl. Phys. Lett. 71, 2532 (1997)
  • 9. J. Shi, J.M. Kikkawa, D.D. Awschalom, G. Medeiro-Riberio, P.M. Petroff, K. Babcock, J. Appl. Phys. 79, 5296 (1996)
  • 10. J. Shi, J.M. Kikkawa, R. Proksch, T. Schaffer, D.D. Awschalom, G. Medelros-Ribeiro, P.M. Petroff, Natureg (London) 377, 707 (1995)
  • 11. K. Ando, A. Chiba, H. Tanoue, F. Kirino, M. Tanaka, IEEE Trans. Magn. 35, 3463 (1999)
  • 12. E. Abe, F. Matsukura, H. Yasuda, Y. Ohno, H. Ohno, Physica E 7, 981 (2000)
  • 13. A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson, Phys. Rev. B 58, 7565 (1998)
  • 14. R.W.G. Wyckoff, Crystal Structuresg 1, 85-237 (1963) Second edition. Interscience Publishers, New York
  • 15. B. Ravel, M. Newville, J. Synchrotron Rad. 12, 537 (2005)
  • 16. American Mineralogist Crystal Structure Database:
  • 17. K.H.J. Buschow, P.G. van Engen, R. Jongebreur, J. Magn. Magn. Mat. 38, 1 (1983); Inorganic Crystal Structure Database #103797
  • 18. H.G. Meissner, K. Schubert, Zeitschrift fuer Metallkundeg 56, 523 (1965); Inorganic Crystal Structure Database #103798
  • 19. O. Gourdon, G.J. Miller, J. Sol. Stat. Chem. 173, 137 (2003); Inorganic Crystal Structure Database #96491
  • 20. E. Kren, G. Kadar, Sol. Stat. Commun. 8, 1653 (1970); Inorganic Crystal Structure Database #103799
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.