Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | S | S-95-S-98
Article title

Optical Analyses of Si and GaAs Semiconductors by Fractional-Derivative-Spectrum Methods

Title variants
Languages of publication
Optical spectra analysis provides a wealth of information on physical properties of various semiconductor materials. Fractional derivative spectrum technique is especially interesting when the limitations of the standard treatment occur. In this paper we present the fractional derivative spectrum method for analysis of the optical spectra for both Si and GaAs. The significant changes in critical point parameters in each treated Si and GaAs samples in comparison to that before treatment have been observed. Our investigation illustrates that fractional derivative spectrum is a very good technique to extract basic information on relevant physical quantities from the observed optical spectra, and it has the advantages of flexibility, directness, and sensitivity, which give possibility to obtain the Van Hove singularities (critical point parameters) efficiently with one consent.
  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Physics, UMCS, pl. M.Curie-Skłodowskiej 1, 20-031 Lublin, Poland
  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
  • 1. M.A. El-Sherbiny, H.H. El-Bahnasawy, M.M. El-Ocker, Nucl. Instrum. Methods. Phys. Res. B 168, 510 (2000)
  • 2. K. Tao, T. Lai, Y. Zhang, Z. Yu, D. Mo, J. Phys., Condens. Matter 16, 3041 (2004)
  • 3. X.F. He, D. Mo, Chin. Phys. Lett. 3, 565 (1986)
  • 4. X.F. He, Phys. Rev. B 42, 11751 (1990)
  • 5. X.F. He, Phys. Rev. B 43, 2063 (1991)
  • 6. L.F. Lastras-Martinez, T. Ruf, M. Konuma, M. Cardona, Phys. Rev. B 61, 12946 (2000)
  • 7. K.B. Oldham, J. Spanier, The Fractional Calculus and Its Applications, Springer, Berlin 1976
  • 8. W. Rzodkiewicz, A. Kudla, A. Misiuk, B. Surma, J. Bak-Misiuk, J. Hartwig, J. Ratajczak, Mater Sci. Semiconductor Proc. 7, 399 (2004)
  • 9. E. Papis-Polakowska, Electron Technology Int. J. 37/38, 1 (2005/2006)
  • 10. R.V. Ghita, C. Negrilla, J. Opt. Adv. Mat. 5, 859 (2003)
  • 11. E. Papis, A. Baranska, P. Karbownik, A. Szerling, A. Wojcik-Jedlinska, M. Bugajski, W. Rzodkiewicz, J. Szade, A. Wawro, Opt. Appl., in press
  • 12. J.R. Chelikovsky, M.L. Cohen, Phys. Rev. B 10, 5095 (1974)
  • 13. C.M. Herzinger, B. Johs, W.A. McGahan, J.A. Woollam, W. Paulson, J. Appl. Phys. 83, 3323 (1998)
  • 14. M. Rohlfing, P. Kruger, J. Pollmann, Phys. Rev. B 48, 17791 (1993)
  • 15. N.E. Christensen, Phys. Rev. B 30, 5753 (1984)
  • 16. S. Zollner, J. Appl. Phys. 90, 515 (2001)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.