Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | S | S-7-S-12

Article title

Single Electron Spin Operations Employed for Logical Gates of Quantum Computer

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Electron localized in a quantum dot in the vicinity of conductor surface, causes an induced potential to appear. This potential enables self-focusing of electron wave function. Because of this feature, in a planar nanostructure consisting of a quantum well covered with a layer of an insulator, on top of which metal electrodes are deposited, formation of induced dots and quantum wires is possible. By applying appropriate voltages to the electrodes, it is feasible to transport an electron in a fully controllable way in a form of a stable wave packet between two specific locations in a nanodevice. While transporting an electron along properly shaped closed loops, spin-orbit coupling intrinsically present in a semiconductor nanostructure can be employed to perform operations on an electron spin.

Keywords

Contributors

author
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
author
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

References

  • 1. S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)
  • 2. D. Awshalom, D. Loss, N. Samarth, Semiconductor Spintronics and Quantum Computation, Springer Verlag, Berlin 2002
  • 3. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)
  • 4. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 309, 2180 (2005)
  • 5. F.H.L. Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kouwenhoven, L.M.K. Vandersypen, Nature 442, 766 (2006)
  • 6. W.A. Colsh, D. Loss, Phys. Rev. B 75, 161302 (2007)
  • 7. F.H.L. Koppens, C. Buizert, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kouwenhoven, L.M.K. Vandersypen, Nature (London) 442, 766 (2006)
  • 8. K.C. Nowack, F.H.L. Koppens, Yu.V. Nazarov, L.M.K. Vandersypen, Science 318, 1430 (2007)
  • 9. J.M. Elzermann, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature 430, 431 (2004)
  • 10. R. Hanson, van L.H.W. Beveren, I.T. Vink, J.M. Elzerman, W.J.M. Naber, F.H.L. Koppens, L.P. Kouwenhoven, L.M.K. Vandersypen, Phys. Rev. Lett. 94, 196802 (2005)
  • 11. T. Meunier, I.T. Vink, van L.H.W. Beveren, F.H.L. Koppens, H.P. Tranitz, W. Wegscheider, L.P. Kouwenhoven, L.M.K. Vandersypen, Phys. Rev. B 74, 195303 (2006)
  • 12. S. Bednarek, B. Szafran, K. Lis, Phys. Rev. B 72, 075319 (2005)
  • 13. S. Bednarek, B. Szafran, Phys. Rev. B 73, 155318 (2006)
  • 14. S. Bednarek, B. Szafran, R.J. Dudek, K. Lis, Phys. Rev. Lett. 100, 126805 (2008)
  • 15. S. Bednarek, B. Szafran, Phys. Rev. Lett. 101, 216805 (2008)
  • 16. S. Bednarek, B. Szafran, Nanotechnology 20, 065402 (2009)
  • 17. G. Dresselhaus, Phys. Rev. 100, 580 (1955)
  • 18. E.I. Rashba, Sov. Phys.-Solid State 2, 1109 (1960)
  • 19. E.A. de Andrada e Silva, G.C. La Rocca, F. Bassani, Phys. Rev. B 55, 16293 (1997)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv116ns01kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.