Title variants
Languages of publication
Abstracts
Electron localized in a quantum dot in the vicinity of conductor surface, causes an induced potential to appear. This potential enables self-focusing of electron wave function. Because of this feature, in a planar nanostructure consisting of a quantum well covered with a layer of an insulator, on top of which metal electrodes are deposited, formation of induced dots and quantum wires is possible. By applying appropriate voltages to the electrodes, it is feasible to transport an electron in a fully controllable way in a form of a stable wave packet between two specific locations in a nanodevice. While transporting an electron along properly shaped closed loops, spin-orbit coupling intrinsically present in a semiconductor nanostructure can be employed to perform operations on an electron spin.
Discipline
- 03.67.Lx: Quantum computation architectures and implementations
- 73.63.Nm: Quantum wires
- 73.21.La: Quantum dots
- 05.45.Yv: Solitons(see 52.35.Sb for solitons in plasma; for solitons in acoustics, see 43.25.Rq—in Acoustics Appendix; see 42.50.Md, 42.65.Tg, 42.81.Dp for solitons in optics; see also 03.75.Lm in matter waves; for solitons in space plasma physics, see 94.05.Fg; for solitary waves in fluid dynamics, see 47.35.Fg)
Journal
Year
Volume
Issue
Pages
S-7-S-12
Physical description
Dates
published
2009-12
Contributors
author
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
author
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
References
- 1. S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)
- 2. D. Awshalom, D. Loss, N. Samarth, Semiconductor Spintronics and Quantum Computation, Springer Verlag, Berlin 2002
- 3. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)
- 4. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 309, 2180 (2005)
- 5. F.H.L. Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kouwenhoven, L.M.K. Vandersypen, Nature 442, 766 (2006)
- 6. W.A. Colsh, D. Loss, Phys. Rev. B 75, 161302 (2007)
- 7. F.H.L. Koppens, C. Buizert, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kouwenhoven, L.M.K. Vandersypen, Nature (London) 442, 766 (2006)
- 8. K.C. Nowack, F.H.L. Koppens, Yu.V. Nazarov, L.M.K. Vandersypen, Science 318, 1430 (2007)
- 9. J.M. Elzermann, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature 430, 431 (2004)
- 10. R. Hanson, van L.H.W. Beveren, I.T. Vink, J.M. Elzerman, W.J.M. Naber, F.H.L. Koppens, L.P. Kouwenhoven, L.M.K. Vandersypen, Phys. Rev. Lett. 94, 196802 (2005)
- 11. T. Meunier, I.T. Vink, van L.H.W. Beveren, F.H.L. Koppens, H.P. Tranitz, W. Wegscheider, L.P. Kouwenhoven, L.M.K. Vandersypen, Phys. Rev. B 74, 195303 (2006)
- 12. S. Bednarek, B. Szafran, K. Lis, Phys. Rev. B 72, 075319 (2005)
- 13. S. Bednarek, B. Szafran, Phys. Rev. B 73, 155318 (2006)
- 14. S. Bednarek, B. Szafran, R.J. Dudek, K. Lis, Phys. Rev. Lett. 100, 126805 (2008)
- 15. S. Bednarek, B. Szafran, Phys. Rev. Lett. 101, 216805 (2008)
- 16. S. Bednarek, B. Szafran, Nanotechnology 20, 065402 (2009)
- 17. G. Dresselhaus, Phys. Rev. 100, 580 (1955)
- 18. E.I. Rashba, Sov. Phys.-Solid State 2, 1109 (1960)
- 19. E.A. de Andrada e Silva, G.C. La Rocca, F. Bassani, Phys. Rev. B 55, 16293 (1997)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv116ns01kz