PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | 6 | 1048-1052
Article title

AC Conductivity and Dielectric Properties οf Amorphous Te_{42}As_{36}Ge_{10}Si_{12} Glass

Content
Title variants
Languages of publication
EN
Abstracts
EN
Te_{42}As_{36}Ge_{10}Si_{12} chalcogenide composition was prepared by conventional melt-quenching. The ac conductivity and the dielectric properties were carried out in the frequency range 0.5×10^{3}-4×10^{6} Hz and temperature range 300-423 K. The analysis of the experimental results of the frequency dependence of ac conductivity σ_{ac}(ω) indicates that σ_{ac}(ω) is proportional to ω^{s} where s> 1. The temperature dependence of both ac conductivity and the parameter s is reasonably well interpreted by the correlated barrier hopping model. The maximum barrier height W_{m} calculated from ac conductivity and the density of localized states were determined. Values of dielectric constant ε_{1} and dielectric loss ε_{2} were found to decrease with frequency and increase with temperature. The analysis of dielectric loss leads to determine the barrier height W_{m} and agrees with that proposed by the theory of hopping of charge carriers over potential barrier between charged defect states as suggested by Elliott in case of chalcogenide glasses.
Keywords
EN
Year
Volume
116
Issue
6
Pages
1048-1052
Physical description
Dates
published
2009-12
received
2008-09-25
References
  • 1. A.R. Hibton, D. Hayes, M. Rechtin, J. Non-Cryst. Solids 17, 319 (1965)
  • 2. J. Fusong, M. Okuda, Jap. J. Appl. Phys. 30, 97 (1991)
  • 3. I.D. Aggarwal, J.S. Sanghera, J. Optelectron. Adv. Mater. 4, 665 (2002)
  • 4. A.V. Kolobov, J. Tominaya, J. Optelectron. Adv. Mater. 4, 679 (2002)
  • 5. M.A. Afifi, N.A. Hegab, Vacuum 48, 135 (1997)
  • 6. M.A. Kotkata, M.A. Afifi, H.H. Labib, N.A. Hegab, M.M. Abdel Azis, Thin Solid Films 240, 143 (1994)
  • 7. N.A. Hegab, J. Phys. D, Appl. Phys. 33, 2356 (2000)
  • 8. G. Singh, N. Goyal, G.S.S. Saini, S.K. Tripathi, J. Non-Cryst. Solids 353, 1322 (2007)
  • 9. D.K. Goel, C.P. Singh, J. Mater. Sci. 35, 1017 (2000)
  • 10. A.E. Bekheet, N.A. Hegab, Vacuum, in press
  • 11. R.A. Street, N.F. Mott, Phys. Rev. Lett. 35, 1293 (1975)
  • 12. M. Kastner, H. Fritzshe, Philos. Mag. 37, 553 (1978)
  • 13. A.L. Efros, Philos. Mag. B 43, 829 (1981)
  • 14. A.N.R. Long, Adv. Phys. 31, 553 (1982)
  • 15. S.R. Elliott, Phil. Mag. B 36, 1291 (1977); S.R. Elliott, Philos. Mag. B 37, 553 (1978)
  • 16. A.K. Jonscher, Nature 267, 673 (1977)
  • 17. S.R. Elliott, Adv. Phys. 36, 135 (1987)
  • 18. K. Shimakawa, J. Phys. (Paris) 42C4, 621 (1981)
  • 19. S.S. Fouad, Vacuum 52, 505 (1999)
  • 20. L.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)
  • 21. V.K. Bhatnagar, K.L. Bhatia, J. Non-Cryst. Solids 119, 214 (1990)
  • 22. K. Shimakawa, Philos. Mag. B 46, 123 (1982)
  • 23. H.K. Rockstad, Solid State Commun. 1507, 2233 (1971); J. Non-Cryst. Solids 8-10, 621 (1972)
  • 24. A.M. Farid, H.E. Atyia, N.A. Hegab, Vacuum 80, 284 (2005)
  • 25. M. Barsoum, Fundamentals of Ceramics, Mc Graw-Hill, New York 1977, p. 543
  • 26. L. Pauling, The Nature of Chemical Bond, Cornell University, New York 1960
  • 27. T.M. Stevels, The Electrical Properties of Glasses, Handbuch der Physik, Ed. Flugged, Springer, Berlin 1957, p. 350
  • 28. J.C. Giantini, J.V. Zancheha, J. Non-Cryst. Solids 34, 419 (1979)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv116n613kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.