PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | 6 | 1025-1028
Article title

Analytical Solution of Nonlinear Diffusion Equation Describing Interdiffusion of Gases

Content
Title variants
Languages of publication
EN
Abstracts
EN
The diffusion is the result of Brownian movement and occurs with a finite velocity. We consider the nonlinear diffusion equation, with diffusion coefficient directly proportional to the impurities concentration. In this case of diffusion from the constant source, the maximum displacements of diffusing particles are proportional to the square root of diffusion time. This result coincides with Brownian movement theory. The obtained analytically solutions were successfully applied for describing the diffusion and superdiffusion experiments' in solids. After theoretical consideration of application of this equation for diffusion in gases, we are investigating here the binary nonlinear diffusion in gases. We obtained the nonlinear interdiffusion equation, for the spherical symmetric case, and presented the approximate analytical solutions.
Keywords
EN
Publisher

Year
Volume
116
Issue
6
Pages
1025-1028
Physical description
Dates
published
2009-12
received
2008-02-28
(unknown)
2009-07-20
(unknown)
2009-10-12
Contributors
  • Faculty of Nature, Šiauliai University, P. Višinskio 19, 76351, Šiauliai, Lithuania
author
  • Faculty of Mathematics and Informatics, Šiauliai University, P. Višinskio 19, 76351 Šiauliai, Lithuania
References
  • 1. J.P. Stark, Metall. Mater. Trans. A 11, 1073 (1980)
  • 2. M. Danielewski, M. Pietrzyk, B. Wierzba, Solid State Phenom. 129, 11 (2007)
  • 3. L.S. Darken, Trans. AIME 174, 184 (1948)
  • 4. A.J. Janavičius, V. Stukaitė, D.J. Zanevičius, Electron Technique, Ser. 2, Semicond. Dev. 160, 27 (1983) (in Russian)
  • 5. A.J. Janavičius, Phys. Lett. A 224, 159 (1997)
  • 6. A.J. Janavičius, A. Poškus, Acta Phys. Pol. A 107, 519 (2005)
  • 7. Y. Oishi, M. Sugisaki, Y. Kamei, Y. Shono, Bull. Chem. Soc. Japan 45, 2984 (1972)
  • 8. A.J. Janavičius, P. Norgėla, D. Jurgaitis, Math. Modell. Anal. 6, 77 (2001)
  • 9. M.E. Gliksman, Diffusion in Solids, Wiley, New York 2000, p. 472
  • 10. Laboratory Guide of Physics, Ed. L.L. Goldin, Nauka, Moscow 1983, p. 704 (in Russian)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv116n608kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.