PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | 6 | 994-1005
Article title

Two-Level Atom at Finite Temperature

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Properties of a two-level atom coupled to the quantized electromagnetic field at finite temperature are determined. The analysis is based on a new method (inspired by quantum electrodynamics) of describing qubits, developed previously at zero temperature. In this paper, we make a generalization to finite temperature by introducing the Matsubara formalism and the temperature propagators. We analyze the spectral properties of different types of propagators and we derive a direct connection between the temperature propagators and the real time propagators. To show the effectiveness of this method, we calculate the temperature dependence of the polarizability of a two-level atom in the lowest order of perturbation theory and we predict an unexpected sharpening of the resonance. The whole discussion is carried out without the rotating wave approximation.
Keywords
Contributors
author
  • Center for Theoretical Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University, Wóycickiego 1/3, 01-938 Warsaw, Poland
References
  • 1. I. Białynicki-Birula, T. Sowiński, Phys. Rev. A 76, 062106 (2007)
  • 2. T. Matsubara, Prog. Theor. Phys. 14, 351 (1955)
  • 3. K.M. Watson, Phys. Rev. 103, 489 (1956)
  • 4. R. Kubo, J. Phys. Soc. Japan 12, 570 (1957)
  • 5. P.C. Martin, J. Schwinger, Phys. Rev. 115, 1342 (1959)
  • 6. J.M. Luttinger, Phys. Rev. 119, 1153 (1960)
  • 7. A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Translated by R.A. Silverman, Prentice-Hall Inc., New Jersey 1963
  • 8. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York 1971
  • 9. J.I. Kapusta, Finite Temperature Field Theory, Cambridge University Press, Oxford 1989
  • 10. A. Das, Finite Temperature Field Theory, World Sci., Singapore 1997
  • 11. S. Sachdev, Phys. Rev. A 29, 2627 (1984)
  • 12. S.M. Barnett, P.L. Knight, Phys. Rev. A 33, 2444 (1986)
  • 13. J. Salo, S.M. Barnett, S. Stenholm, Opt. Commun. 259, 772 (2006)
  • 14. M.P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S.P. Walborn, P.H. Souto Ribeiro, L. Davidovich, Science 316, 579 (2007)
  • 15. J. Laurat, K.S. Choi, H. Deng, C.W. Chou, H.J. Kimble, Phys. Rev. Lett. 99, 180504 (2007)
  • 16. A. Al-Qasimi, D.F.V. James, Phys. Rev. A 77, 012117 (2008)
  • 17. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)
  • 18. S. Bose, I. Fuentes-Guridi, P.L. Knight, V. Vedral, Phys. Rev. Lett. 87, 050401 (2001)
  • 19. M.S. Kim, Jinhyoung Lee, D. Ahn, P.L. Knight, Phys. Rev. A 65, 040101(R) (2002)
  • 20. S.B. Li, J.B. Xu, Phys. Lett. A 313, 175 (2003)
  • 21. J.H. Reinaa, A. Briridb, Microelectronics J. 39, 696 (2008)
  • 22. W.P. Li, Z.W. Wang, J.W. Yin, Y.F. Yu, J.L. Xiao, Physica B 403, 3709 (2008)
  • 23. D.L. Andrews, S. Naguleswaran, G.E. Stedman, Phys. Rev. A 57, 4925 (1998)
  • 24. A.D. Buckingham, P. Fischer, Phys. Rev. A 61, 035801 (2000)
  • 25. G.E. Stedman, S. Naguleswaran, D.L. Andrews, L.C. Dávila Romero, Phys. Rev. A 63, 047801 (2001)
  • 26. A.D. Buckingham, P. Fischer, Phys. Rev. A 63, 047802 (2001)
  • 27. D.L. Andrews, L.C. Dávila Romero, G.E. Stedman, Phys. Rev. A 67, 055801 (2003)
  • 28. P.W. Milonni, R.W. Boyd, Phys. Rev. A 69, 023814 (2004)
  • 29. P.R. Berman, R.W. Boyd, P.W. Milonni, Phys. Rev. A 74, 053816 (2006)
  • 30. P.W. Milonni, R. Loudon, P.R. Berman, S.M. Barnett, Phys. Rev. A 77, 043835 (2008)
  • 31. K. Huang, Statistical Mechanics, Wiley, New York 1963
  • 32. D.N. Zubarev, Sov. Phys.-Usp. 3, 320 (1960)
  • 33. R. Loudon, S.M. Barnett, J. Phys. B, At. Mol. Opt. Phys. 39, S555 (2006)
  • 34. D.J. Masiello, G.C. Schatz, Phys. Rev. A 78, 042505 (2008)
  • 35. S. Mukamel, Phys. Rev. A 76, 021803(R) (2007)
  • 36. G. Baym, N.D. Mermin, J. Math. Phys. 2, 232 (1961)
  • 37. C.P. Slichter, Principles of Magnetic Resonance, Springer-Verlag, Berlin 1978
  • 38. R. Hanson, B. Witkamp, L.M.K. Vandersypen, L.H. Willems van Beveren, J.M. Elzerman, L.P. Kouwenhoven, Phys. Rev. Lett. 91, 196802 (2003)
  • 39. J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, B. Witkamp, L.M.K. Vandersypen, L.P. Kouwenhoven, Nature 430, 431 (2004)
  • 40. F.G. Major, G. Werth, Phys. Rev. Lett. 30, 1155 (1973)
  • 41. U. Tanaka, H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, Phys. Rev. A 53, 3982 (1996)
  • 42. L. Essen, E.G. Hope, D. Sutcliffe, Nature 189, 298 (1961)
  • 43. S. Penselin, T. Moran, V.W. Cohen, G. Winkler, Phys. Rev. 127, 524 (1962)
  • 44. D.L. Huber, J.H. Van Vleck, Rev. Mod. Phys. 38, 197 (1966)
  • 45. W. Götze, P. Wölfle, J. Low Temp. Phys. 5, 575 (1971)
  • 46. R. Pirc, B.G. Dick, Phys. Rev. B 10, 3594 (1974)
  • 47. W. Götze, G.M. Vujičić, Phys. Rev. B 38, 9398 (1988)
  • 48. R. Beck, W. Götze, P. Prelovšek, Phys. Rev. A 20, 1140 (1979)
  • 49. K.W. Becker, J. Keller, Z. Phys. B 62, 477 (1986)
  • 50. N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679 (1948)
  • 51. R. Kubo, in: Fluctuation, Relaxation and Resonance in Magnetic Systems, Ed. D. Ter Haar, Oliver and Boyd, Edinburgh 1962, p. 2368
  • 52. M.I. Dyakonov, V.I. Perel, Sov. Phys.-JETP 33, 1053 (1971)
  • 53. D.W. Oxtoby, J. Chem. Phys. 70, 2605 (1979)
  • 54. J.H. Eberly, K. Wódkiewicz, B.W. Shore, Phys. Rev. A 30, 2381 (1984)
  • 55. A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, P. Roussignol, R. Ferraira, J.M. Gérard, Nature Phys. 2, 759 (2006)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv116n603kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.