Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | 6 | 987-991

Article title

Asymmetry Coefficients as Indicators of Chaos

Content

Title variants

Languages of publication

EN

Abstracts

EN
The aim of this paper is to present a new simple indicator of chaos derived from the dynamics of the motion. For this purpose statistical methods are used. A function describing the motion of the analyzed system (in the example under consideration, the time dependence of the angle of a damped driven pendulum, ω(t)) is recorded in time intervals t∊〈 T_{s}, T_{f_{k}}〉, k = 1, 2,...K, with T_{f_{k}} > T_{f_{k-1}}. Each of the recorded functions is considered as a statistical distribution. The asymmetry coefficients of the set of distributions form a series and their behavior in periodic and chaotic regions is compared. It is shown that the behavior of this series in the chaotic and in the periodic regimes is entirely different. The changes of the asymmetry coefficients for the periodic cases are very regular and for the chaotic ones - random. In periodic cases, the coefficients converge to zero when the length of the distribution increases.

Keywords

Contributors

author
  • Centrum Astronomii, Uniwersytet Mikołaja Kopernika, Gagarina 11, 87-100 Toruń, Poland
  • Instytut Fizyki, Uniwersytet Mikołaja Kopernika, Grudziądzka 5, 87-100 Toruń, Poland

References

  • 1. G. Contopoulos, N. Voglis, Astron. Astrophys. 317, 73 (1997)
  • 2. C. Froeschlé, E. Lega, Astron. Astrophys. 334, 355 (1998)
  • 3. Ch. Skokos, J. Phys. A 34, 10029 (2001)
  • 4. Ch. Skokos, Ch. Antonopoulos, T.C. Bountis, M.N. Vrahatis, J. Phys. A 37, 6269 (2004)
  • 5. M. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer Verlag, New York 1990
  • 6. G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Meccanica 15, 9 (1980); 15, 21 (1980)
  • 7. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)
  • 8. C. Piccardi, Chaos 14, 1026 (2004); 16, 043115 (2006), and references therein
  • 9. Z. Sándor, B. Érdi, A. Széll, B. Funk, Celest. Mech. Dyn. Astr. 90, 127 (2004)
  • 10. Ch. Skokos, T.C. Bountis, Ch. Antonopoulos, Physica D 231, 30 (2007)
  • 11. Ch. Skokos, T.C. Bountis, Ch. Antonopoulos, Eur. Phys. J. Special Topics 165, 5 (2008)
  • 12. K. Goździewski, Astron. Astrophys. 398, 1151 (2003)
  • 13. K. Goździewski, M. Konacki, A. Wolszczan, Astrophys. J. 619, 1084 (2005)
  • 14. M. Lax, J. Chem. Phys. 20, 1752 (1952)
  • 15. D. Bielińska-Wąż, P. Wąż, S.C. Basak, Eur. Phys. J. B 50, 333 (2006)
  • 16. D. Bielińska-Wąż, P. Wąż, S.C. Basak, J. Math. Chem. 42, 1003 (2007)
  • 17. P. Wąż, D. Bielińska-Wąż, A. Pleskacz, A. Strobel, Acta Phys. Pol. B 39, 1993 (2008)
  • 18. C.E. Porter, Statistical Theories of Spectra: Fluctuations, Academic, New York 1965
  • 19. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981)
  • 20. J. Bauche, C. Bauche-Arnoult, M. Klapisch, Adv. At. Mol. Phys. 23, 132 (1988)
  • 21. D. Bielińska-Wąż, in: Symmetry and Structural Properties of Condensed Matter, Eds. T. Lulek, W. Florek, S. Wałcerz, World Sci., Singapore 1999, p. 212
  • 22. D. Bielińska-Wąż, N. Flocke, J. Karwowski, Phys. Rev. B 59, 2676 (1999)
  • 23. G.L. Baker, J.P. Gollub, Chaotic Dynamics: An Introduction, University Press, Cambridge 1990, 1996
  • 24. E.G. Gwinn, R.M. Westervelt, Phys. Rev. A 33, 4143 (1986)
  • 25. E. Everhart, Celest. Mech. 10, 35 (1974)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv116n601kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.