Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | 5 | 814-817

Article title

ZnO by ALD - Advantages of the Material Grown at Low Temperature

Content

Title variants

Languages of publication

EN

Abstracts

EN
The 3D-architecture is a prospective way in miniaturization of electronic devices. However, this approach can be realized only if metal paths are placed not only at the top, but also beneath the electronic parts, which imposes drastic temperature limitations for the electronic device processing. Therefore last years a lot of investigations are focused on materials which can be grown at low temperature with electrical parameters appropriate for electronic applications. Zinc oxide grown by the atomic layer deposition method is one of the materials of choice. We obtained ZnO-ALD films at growth temperature range between 100°C and 200°C, and with controllable electrical parameters. Free carrier concentration was found to scale with deposition temperature, so it is possible to grow ZnO films with desired conductivity without any intentional doping. We used correlation of electrical and optical parameters to optimize the deposition process. Zinc oxide layers obtained in that way have free carrier concentration as low as 10^{16} cm^{-3} and high mobility (10-50 cm^{2}/(Vs)), which satisfies requirements for a material used in three-dimensional memories.

Keywords

EN

Contributors

author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Dept. of Mathematics and Natural Sciences, College of Science, Cardinal S. Wyszyński University, Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland

References

  • 1. G. Moore, Electronics 38, 4 (1965)
  • 2. K. Ishimaru, Solid-State Electron. 52, 1266 (2008)
  • 3. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)
  • 4. M. Johnson, A. Al-Shamma, D. Bosch, M. Crowley, M. Farmwald, L. Fasoli, A. Ilkabar, B. Kleveland, T. Lee, Liu Tz-yi, N. Quang, R. Scheuerlein, K. So, T. Thorp, IEEE J. Solid State Circ. 38, 1920 (2003)
  • 5. S. Wagner, H. Gleskowa, I.-Ch. Cheng, M. Wu, Thin Solid Films 430, 15 (2003)
  • 6. R. Triboulet, J. Perrière, Prog. Cryst. Growth Charact. Mater. 47, 65 (2003)
  • 7. I.A. Kowalik, E. Guziewicz, K. Kopalko, S. Yatsunenko, A. Wójcik-Głodowska, M. Godlewski, P. Dłużewski, E. Łusakowska, W. Paszkowicz, J. Cryst. Growth 311, 1096 (2009)
  • 8. V. Craciun, J. Elders, J.G.E. Gardeniers, I.W. Boyd, Appl. Phys. Lett. 65, 2963 (1994)
  • 9. E. Guziewicz, I.A. Kowalik, M. Godlewski, K. Kopalko, V. Osinniy, A. Wójcik, S. Yatsunenko, E. Łusakowska, W. Paszkowicz, M. Guziewicz, J. Appl. Phys. 103, 033515 (2008)
  • 10. N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, V. Osinniy, Appl. Phys. Lett. 92, 023502 (2007)
  • 11. M. Godlewski, E. Guziewicz, G. Łuka, T. Krajewski, M. Łukasiewicz, Ł. Wachnicki, A. Wachnicka, K. Kopalko, A. Sarem, B. Dalati, Thin Solid Films, in press
  • 12. E. Katsia, N. Huby, G. Tallarida, B. Kutrzeba-Kotowska, M. Perego, S. Ferrari, F.C. Krebs, E. Guziewicz, M. Godlewski, V. Osinniy, G. Luka, Appl. Phys. Lett. 94, 143501 (2009)
  • 13. S.K. Kim, C.H. Hwang, S.H.K. Park, S.J. Yun, Thin Solid Films 478, 103 (2005)
  • 14. S.H.K. Park, C.S. Hwang, H.S. Kwack, J.H. Lee, H.Y. Chu, Electrochem. Solid-State Lett. 9, G299 (2006)
  • 15. E.G. Bylander, J. Appl. Phys. 49, 1188 (1978)
  • 16. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voiget, Appl. Phys. Lett. 68, 403 (1996)
  • 17. M. Liu, A.H. Kitai, P. Mascher, J. Lumin. 54, 35 (1992)
  • 18. M. Prà, S. Schuster, C. Erlen, G. Csaba, P. Lugli, in: Emerging Non-Volatile Memories, ESSDERC 2007, München 2008
  • 19. N. Huby, G. Tallarida, M. Kutrzeba, S. Ferrari, E. Guziewicz, Ł. Wachnicki, M. Godlewski, Microelectron. Eng. 85, 2442 (2008)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv116n513kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.