EN
The fabrication of quantum cascade lasers emitting at 9 μm is reported. The devices operated in pulsed mode at up to 260 K. The peak powers recorded at 77 K were over 1 W and the slope efficiency η ≈ 0.5-0.6 W/A per uncoated facet. This has been achieved by the use of GaAs/Al_{0.45}Ga_{0.55}As heterostructure, with the "anticrossed-diagonal" design. Double plasmon planar confinement with Al-free waveguide has been used to minimize absorption losses. The double trench lasers were fabricated using standard processing technology, i.e., wet etching and Si_{3}N_{4} for electrical insulation. The quantum cascade laser structures have been grown by molecular beam epitaxy, with Riber Compact 21 T reactor. The stringent requirements - placed particularly on the epitaxial technology - and the influence of technological conditions on the device structure properties were presented and discussed in depth.