Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | 5 | 806-813

Article title

Molecular Beam Epitaxy Growth for Quantum Cascade Lasers

Content

Title variants

Languages of publication

EN

Abstracts

EN
The fabrication of quantum cascade lasers emitting at 9 μm is reported. The devices operated in pulsed mode at up to 260 K. The peak powers recorded at 77 K were over 1 W and the slope efficiency η ≈ 0.5-0.6 W/A per uncoated facet. This has been achieved by the use of GaAs/Al_{0.45}Ga_{0.55}As heterostructure, with the "anticrossed-diagonal" design. Double plasmon planar confinement with Al-free waveguide has been used to minimize absorption losses. The double trench lasers were fabricated using standard processing technology, i.e., wet etching and Si_{3}N_{4} for electrical insulation. The quantum cascade laser structures have been grown by molecular beam epitaxy, with Riber Compact 21 T reactor. The stringent requirements - placed particularly on the epitaxial technology - and the influence of technological conditions on the device structure properties were presented and discussed in depth.

Keywords

Contributors

author
  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland

References

  • 1. C. Sirtori, GaAs Quantum Cascade Lasers: Fundamentals and Performance, EDP Sciences, 2002
  • 2. C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001)
  • 3. H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, C. Sirtori, Appl. Phys. Lett. 78, 3529 (2001)
  • 4. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, Appl. Phys. Lett. 73, 3486 (1998)
  • 5. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics, 2nd ed., Wiley, Chichester, U.K. 2005
  • 6. http://www.nextnano.de
  • 7. A. Wójcik-Jedlińska, M. Wasiak, K. Kosiel, M. Bugajski, Opt. Appl., in press
  • 8. M. Motyka, G. Sęk, F. Janiak, K. Ryczko, J. Misiewicz, K. Kosiel, M. Bugajski, Opt. Appl., in press
  • 9. K. Kosiel, J. Kubacka-Traczyk, P. Karbownik, A. Szerling, J. Muszalski, M. Bugajski, P. Romanowski, J. Gaca, M. Wójcik, Microelectron. J. 40, 565 (2009)
  • 10. S. Hofling, V.D. Jovanovic, D. Indjin, J.P. Reithmaier, A. Forchel, Z. Ikonic, N. Vukmirovic, P. Harrison, Appl. Phys. Lett. 88, 251109 (2006)
  • 11. Ch. Mann, Q. Yang, F. Fuchs, W. Bronner, K. Kohler, J. Wagner, IEEE J. Quantum Electron. 42, 994 (2006)
  • 12. K. Kosiel, M. Bugajski, A. Szerling, J. Kubacka-Traczyk, P. Karbownik, E. Pruszyńska-Karbownik, J. Muszalski, A. Łaszcz, P. Romanowski, M. Wasiak, W. Nakwaski, I. Makarowa, P. Perlin, Photon. Lett. Poland 1, 16 (2009)
  • 13. P. Karbownik, A. Barańska, A. Szerling, W. Macherzyński, E. Papis, K. Kosiel, M. Bugajski, M. Tłaczała, R. Jakieła, Opt. Appl., in press

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv116n512kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.