EN
At very low temperature, a quasi-one-dimensional ensemble of atoms with attractive interactions tend to form a bright soliton. When exposed to a sufficiently weak external potential, the shape of the soliton is not modified, but its external motion is affected. We develop in detail the Bogoliubov approach for the problem, treating, in a non-perturbative way, the motion of the center of mass of the soliton. Quantization of this motion allows us to discuss its long time properties. In particular, in the presence of a disordered potential, the quantum motion of the center of mass of a bright soliton may exhibit Anderson localization, on a localization length which may be much larger than the soliton size and could be observed experimentally.