Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | 4 | 471-475
Article title

Photon's Structure of Motion

Title variants
Languages of publication
A free photon Hamiltonian is linearized using Pauli's matrices. Based on the correspondence of Pauli's matrices kinematics and the kinematics of spin operators, it has been proved that a free photon integral of motion is a sum of orbital momentum and spin momentum for a half-one spin. Linearized Hamiltonian represents a bilinear form of products of spin and momentum operators. Unitary transformation of this form results in an equivalent Hamiltonian, which has been analyzed by the method of Green's functions. The evaluated Green function has given possibility for interpretation of photon reflection as a transformation of photon to antiphoton with energy change equal to double energy of photon and for spin change equal to Dirac's constant. Since photon is relativistic quantum object the exact determining of its characteristics is impossible. It is the reason for series of experimental works in which photon orbital momentum, which is not integral of motion, was investigated. The exposed theory was compared to the mentioned experiments and in some elements the satisfactory agreement was found.
Physical description
  • 1. A. Messiah, Quantum Mechanics, North-Holland, Amsterdam 1970
  • 2. P.A.M. Dirac, Principles of Quantum Mechanics, 4 ed., Univ. Press, Oxford 1958
  • 3. M. Sapaznjikov, Anti-World - a Reality, Znanie, Moscow 1983 (in Russian), p. 33, 34
  • 4. A.S. Davydov, Quantum Mechanics, Pergamon, London 1976
  • 5. V.B. Berestetskii, E.M. Lipshitz, L.P. Pitaevskii, Quantum Electrodynamics, Pergamon, Oxford/New York 1982
  • 6. V.M. Agranovich, Theory of Excitons, Nauka, Moscow 1968 (in Russian)
  • 7. S.V. Tyablikov, Methods in the Quantum Theory in Magnetism, Plenum, New York (1967)
  • 8. B.S. Tošić, Statistical Physics, Faculty of Sciences, Novi Sad 1976 (in Serbian)
  • 9. G. Rickayzen, Green's Functions and Condensed Matter, Academic Press, London 1980
  • 10. G. Mahan, Many Particle Physics, Plenum Press, New York 1990
  • 11. R.A. Beth, Phys. Rev. 50, 115 (1936)
  • 12. J. Leach, M.J. Padgett, S.M. Barnett, S. Franke-Amold, J. Courtial, Phys. Rev. Lett. 25, 257901 (2002)
  • 13. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185 (1992)
  • 14. P.J. Allen, Am. J. Phys. 74, 1185 (1966)
  • 15. H. He, M.E.J. Friese, N.R. Heckenberg, H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995)
  • 16. M.E.J. Friese, J. Enger, H. Rubinsztein-Dunlop, N.R. Heckenberg, Phys. Rev. A 54, 1593 (1996)
  • 17. S.J.van Enk, G. Nienhuis, Opt. Commun. 94, 147 (1992)
  • 18. E. Santamato, B. Daino, M. Romagnoli, M. Settembre, Y.R. Shen, Mol. Cryst. Liq. Cryst. 143, 89 (1987)
  • 19. A.T. O'Neil, I. Mac Vicar, L. Allen, M.J. Padgett, Phys. Rev. Lett. 88, 053601 (2002)
  • 20. K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, K. Dholakia, J. Opt. B 4, S82 (2002)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.