Journal
Article title
Title variants
Languages of publication
Abstracts
One of the top priorities in the development of quantum cascade laser sources is the optimization of the heat transport dynamic. We review here our experimental studies on the thermal properties of state of art quantum cascade lasers operating both in the mid-IR and THz ranges. The experimental approach is based on the investigation of the band-to-band photoluminescence signals, collected during device continuous wave operation. We measured the lattice temperature profile on the device front facet and using these data as inputs, we extract the heat dissipation patterns, the in-plane and the cross-plane active region thermal conductivities and the thermal boundary resistance for quantum cascade lasers based on different material systems.
Discipline
- 68.35.Ct: Interface structure and roughness
- 61.46.-w: Structure of nanoscale materials(for thermal properties of nanocrystals and nanotubes, see 65.80.-g; for mechanical properties of nanoscale systems, see 62.25.-g; for electronic transport in nanoscale materials, see 73.63.-b; see also 62.23.-c Structural classes of nanoscale systems; 64.70.Nd Structural transitions in nanoscale materials; for magnetic properties of nanostructures, see 75.75.-c)
- 61.82.Fk: Semiconductors
Journal
Year
Volume
Issue
Pages
451-454
Physical description
Dates
published
2009-10
Contributors
author
- CNR-INFM Regional Laboratory LIT, Bari, Italy
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi e Politecnico di Bari, Bari, Italy
author
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi e Politecnico di Bari, Bari, Italy
author
- CNR-INFM Regional Laboratory LIT, Bari, Italy
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi e Politecnico di Bari, Bari, Italy
author
- CNR-INFM Regional Laboratory LIT, Bari, Italy
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi e Politecnico di Bari, Bari, Italy
References
- 1. C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001)
- 2. R. Kohler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritche, R.C. Iotti, F. Rossi, Nature 417, 156 (2002)
- 3. A. Wadel, G. Fedorov, D. Smirnov, S. Kumar, B.S. Williams, Q. Hu, J.L. Reno, Nature Photon. 3, 41 (2008)
- 4. Y. Bai, B. Gokden, S.R. Darvish, S. Slivken, M. Razeghi Appl. Phys. Lett. 95, 031105 (2009)
- 5. M. Razeghi, IEEE J. Select. Top. Quant. Electr. 15, 941 (2009)
- 6. Y. Bai, B. Gokden, S. Slivken, S.R. Darvish, S.A. Pour, M. Razeghi, Proc. SPIE 7222, 72220O (2009)
- 7. M.S. Vitiello, G. Scamarcio, V. Spagnolo, S.S. Dhillon, C. Sirtori, Appl. Phys. Lett. 90, 191115 (2007)
- 8. M.S. Vitiello, G. Scamarcio, V. Spagnolo, IEEE J. Select. Top. Quant. Electr. 14, 431 (2008)
- 9. A. Lops, V. Spagnolo, G. Scamarcio, J. Appl. Phys. 100, 043109 (2006)
- 10. M.S. Vitiello, G. Scamarcio, V. Spagnolo, B.S. Williams, S. Kumar, Q. Hu, J.L. Reno, Appl. Phys. Lett. 86, 111115 (2005)
- 11. M.S. Vitiello, G. Scamarcio, V. Spagnolo, J. Alton, S. Barbieri, C. Worral, H.E. Beere, D.A. Ritchie, C. Sirtori, Appl. Phys. Lett. 89, 021111 (2006)
- 12. V. Spagnolo, A. Lops, G. Scamarcio, M.S. Vitiello, C. Di Franco, J. Appl. Phys. 103, 043103 (2008)
- 13. V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A.M. Sergent, A.L. Hutchinson, D.L. Sivco, A.Y. Cho, H. Page, C. Becker, C. Sirtori, IEEE Proc. Optoelectron. 150, 298 (2003)
- 14. J.C. Brice, EMIS Datareviews Series No. 6, INSPEC, London 1991
- 15. M.S. Vitiello, G. Scamarcio, V. Spagnolo, A. Lops, Q. Yang, C. Manz, J. Wagner, Appl. Phys. Lett. 90, 121109 (2007)
- 16. G. Scamarcio, M.S. Vitiello, V. Spagnolo, S. Kumar, B. Williams, Q. Hu, Physica E 40, 1780 (2008)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv116n402kz