Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | 3 | 363-367

Article title

Cavity Enhanced Absorption Spectroscopy Sensor

Content

Title variants

Languages of publication

EN

Abstracts

EN
The paper presents opportunities of cavity enhanced absorption spectroscopy technique application in nitrogen oxides (NO_{x}) detection. In this method the concentration of an absorbing gas is determined by measure of decay time of the light pulse trapped in an optical cavity. The measurements are not sensitive to fluctuation of both laser power and photodetector sensitivity. The cavity enhanced absorption spectroscopy technique is a modification of cavity ring down spectroscopy technique where the off-axis adjustment of the resonator is used. NO_{x} detection is carried out in the visible and infrared range. The signal is registered with a developed low noise photoreceiver. Features of the presented sensor show that it is possible to build a portable trace gases sensor. Its sensitivity could be comparable with chemical detectors. Such a system has several advantages: relatively low price, small size and weight, and detection possibility of other gases.

Keywords

Contributors

author
  • Institute of Optoelectronics at Military University of Technology, S. Kaliskiego 2, 00-908 Warszawa, Poland
author
  • Institute of Optoelectronics at Military University of Technology, S. Kaliskiego 2, 00-908 Warszawa, Poland
author
  • Institute of Optoelectronics at Military University of Technology, S. Kaliskiego 2, 00-908 Warszawa, Poland
  • Institute of Optoelectronics at Military University of Technology, S. Kaliskiego 2, 00-908 Warszawa, Poland

References

  • 1. A. O'Keefe, D.A. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)
  • 2. R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69, 3763 (1998)
  • 3. V.L. Kasyutich, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, R.P. Wayne, Appl. Phys. B 75, 755 (2002)
  • 4. M.F. Merienne, A. Jenouvrier, B. Coquart, J. Atmos. Chem. 20, 281 (1995)
  • 5. J. Wojtas, A. Czyżewski, T. Stacewicz, Z. Bielecki, Opt. Appl. 36, 461 (2006)
  • 6. J. Wojtas, Z. Bielecki, Opto-Electron. Rev. 16, 44 (2008)
  • 7. Z. Bielecki, W. Kołosowski, G. Różański, J. Wojtas, Computational Methods and Experimental Measurements, WIT Press, Southampton 2007, p. 809
  • 8. W.J. Marinelli, D.M. Svanson, H.S. Johnson, J. Chem. Phys. 76, 2864 (1982)
  • 9. A. Szpakowski, C. Tyszkiewicz, T. Pustelny, Acta Phys. Pol. A 114, A-237 (2008)
  • 10. T. Pustelny, I. Zielonka, C. Tyszkiewicz, P. Karasinski, B. Pustelna, Opto-Electron. Rev. 46, 221 (2006)
  • 11. http://www.epa.gov/ttn/emc/ftir/aedcdat1.html

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv116n330kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.