Journal
Article title
Title variants
Languages of publication
Abstracts
The paper presents opportunities of cavity enhanced absorption spectroscopy technique application in nitrogen oxides (NO_{x}) detection. In this method the concentration of an absorbing gas is determined by measure of decay time of the light pulse trapped in an optical cavity. The measurements are not sensitive to fluctuation of both laser power and photodetector sensitivity. The cavity enhanced absorption spectroscopy technique is a modification of cavity ring down spectroscopy technique where the off-axis adjustment of the resonator is used. NO_{x} detection is carried out in the visible and infrared range. The signal is registered with a developed low noise photoreceiver. Features of the presented sensor show that it is possible to build a portable trace gases sensor. Its sensitivity could be comparable with chemical detectors. Such a system has several advantages: relatively low price, small size and weight, and detection possibility of other gases.
Discipline
- 07.50.Qx: Signal processing electronics(see also 84.40.Ua in radiowave and microwave technology; 87.85.Ng Biological signal processing in biomedical engineering)
- 07.07.Df: Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing
- 42.79.Sz: Optical communication systems, multiplexers, and demultiplexers(for fiber networks, see 42.81.Uv)
Journal
Year
Volume
Issue
Pages
363-367
Physical description
Dates
published
2009-09
Contributors
author
- Institute of Optoelectronics at Military University of Technology, S. Kaliskiego 2, 00-908 Warszawa, Poland
author
- Institute of Optoelectronics at Military University of Technology, S. Kaliskiego 2, 00-908 Warszawa, Poland
author
- Institute of Optoelectronics at Military University of Technology, S. Kaliskiego 2, 00-908 Warszawa, Poland
author
- Institute of Optoelectronics at Military University of Technology, S. Kaliskiego 2, 00-908 Warszawa, Poland
References
- 1. A. O'Keefe, D.A. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)
- 2. R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69, 3763 (1998)
- 3. V.L. Kasyutich, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, R.P. Wayne, Appl. Phys. B 75, 755 (2002)
- 4. M.F. Merienne, A. Jenouvrier, B. Coquart, J. Atmos. Chem. 20, 281 (1995)
- 5. J. Wojtas, A. Czyżewski, T. Stacewicz, Z. Bielecki, Opt. Appl. 36, 461 (2006)
- 6. J. Wojtas, Z. Bielecki, Opto-Electron. Rev. 16, 44 (2008)
- 7. Z. Bielecki, W. Kołosowski, G. Różański, J. Wojtas, Computational Methods and Experimental Measurements, WIT Press, Southampton 2007, p. 809
- 8. W.J. Marinelli, D.M. Svanson, H.S. Johnson, J. Chem. Phys. 76, 2864 (1982)
- 9. A. Szpakowski, C. Tyszkiewicz, T. Pustelny, Acta Phys. Pol. A 114, A-237 (2008)
- 10. T. Pustelny, I. Zielonka, C. Tyszkiewicz, P. Karasinski, B. Pustelna, Opto-Electron. Rev. 46, 221 (2006)
- 11. http://www.epa.gov/ttn/emc/ftir/aedcdat1.html
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv116n330kz