Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | 2 | 240-244

Article title

Synthesis, Separation and Electrical Properties of WO_{3-x} Nanopowders via Partial Pressure High Energy Ball-Milling

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Reduction processes of WO_{3} nanopowder either with carbon or with hydrogen were observed using X-ray powder diffraction and transmission electron microscope. The phase transformations, separation, grain size and electrical conductivity of WO_{3-x} nanopowder during reductions via partial pressure high energy ball-milling have been studied. During the carbon-reduction process the monoclinic WO_{3} structure transforms to nonstoichiometric Magneli phases W_{40}O_{118}, WO_{2.9} and finally to WO_{2} and W mixed phases. The Magneli WO_{3-x} phases exhibit specific fringe contrast imaging of well-ordered crystallographic shear planes. In comparison, the monoclinic WO_{3} structure transforms to hydrate WO_{3}·1/3H_{2}O, hexagonal WO_{3}, non-stoichiometric WO_{2.7} and finally to WO_{2} and W mixed phases during the hydrogen-reduction process. The inclusion of hydrogen atoms between the WO_{6} octahedral structure shifts the reduction steps to lower milling times. It demonstrates that the formation of hydrate WO_{3} phases enhances the amenability of the system to reduction. The activation energy for conduction was deduced from the Arrhenius equation and was found to depend on oxygen partial pressure or presence of the hydrogen atoms. The defect band model was used for interpretation of these behaviors. It supposes that the surface oxygen vacancies introduce donor levels in the gap of semiconductor, so free electrons are produced by reduction.

Keywords

EN

Contributors

  • Nano-Materials Labs, Physics Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria

References

  • 1. Gil-Su Kim, Young Jung Lee, Dae-Gun Kim, Young Do Kim, J. Alloys Comp. 454, 327 (2008)
  • 2. Dae-Gun Kima, Kyung Ho Mina, Si-Young Changb, Sung-Tag Ohc, Chang-Hee Lee, Young Do Kima, Mater. Sci. Eng. A 399, 326 (2005)
  • 3. Yu.M. Solonin, O.Yu. Khyzhun, E.A. Graivoronskaya, Cryst. Growth Design 1, 473 (2001)
  • 4. C.V. Ramana, S. Utsunomiya, R.C. Ewing, C.M. Julien, U. Becker, J. Phys. Chem. B 110, 10430 (2006)
  • 5. H. Meixner, J. Gerblinger, U. Lampe, M. Fleischer, Sensors Actuators B 23, 119 (1995)
  • 6. Z.G. Huanga, Z.P. Guoa, A. Calka, D. Wexler, C. Lukeyc, H.K. Liu, J. Alloys Comp. 422, 299 (2006)
  • 7. Gwan-Hyoung Lee, Shinhoo Kang, J. Alloys Comp. 419, 281 (2006)
  • 8. M.C. Yang, J. Xu, Z.Q. Hu, Int. J. Refractory Metals Hard Mater. 22, 1 (2004)
  • 9. Zhen Xiong, Gangqin Shao, Xiaoliang Shi, Xinglong Duan, Li Yan, Int. J. Refractory Metals Hard Mater. 26, 242 (2008)
  • 10. W.J. Rankin, J.R. Wynnyckyj, Metall. Mater. Trans. B 28, 308 (April 1997)
  • 11. A. Galembeck, O. L. Alves, Thin Solid Films 365, 90 (2000)
  • 12. S. Sathyamurthy, K. Salama, Physica C 34, 12479 (2000)
  • 13. A. Al Mohammad, Phys. Status Solidi A 205, 2880 (2008)
  • 14. O.K. Tan, W. Zhu, Q. Yan, L.B. Kong, Sens. Actuators B 65, 361 (2000)
  • 15. O.K. Tan, W. Cao, W. Zhu, Sens. Actuators B 63, 129 (2000)
  • 16. Z. Ling, C. Leach, Sens. Actuators B 102, 102 (2004)
  • 17. Shunji Abe, U-Sung Choi, Kengo Shimanoe, Noboru Yamazoe, Sens. Actuators B 107, 516 (2005)
  • 18. V. Guidi, M. Blo, M.A. Butturi, M.C. Carotta, S. Galliera, A. Giberti, C. Malagù, G. Martinelli, M. Piga, M. Sacerdoti, B. Vendemiati, Sens. Actuators B 100, 277 (2004)
  • 19. M. Gillet, K. Aguir, C. Lemire, E. Gillet, K. Schierbaum, Thin Solid Films 467, 239 (2004)
  • 20. C. Cantalini, W. Wlodarski, Y. Li, Sens. Actuators B, Chem. 64, 182 (2000)
  • 21. D.W. Bullett, J. Phys. C, Solid State Phys. 16, 2197 (1983)
  • 22. C. Scott, S. Ding, R.J. Lad, Sens. Actuators B 77, 375 (2001)
  • 23. M. Gillet, C. Lemire, E. Gillet, K. Aguir, Surf. Sci. 532/535, 519 (2003)
  • 24. Q. Wang, Z. Wen, Y. Jeong, J. Choi, K. Lee, J. Li, Nanotechnology 17, 3116 (2006)
  • 25. S.K. Deb, Phys. Rev. B 16, 1020 (1977)
  • 26. A. Wolcott, T.R. Kuykendall, W. Chen, S. Chen, J.Z. Zhang, J. Phys. Chem. B 110, 25288 (2006)
  • 27. H. Kawasaki, J. Namba,K. Iwatsuji, Appl. Surf. Sci. 197, 547 (2002)
  • 28. S.C. Moulzoff, L.J. Legore, R.J. Lao, Thin Solid Films 400, 56 (2001)
  • 29. M. Gillet, R. Delamare, E. Gillet, J. Crystal Growth 279, 93 (2005)
  • 30. G.V. Kunte, U. Ail, Bull. Mater. Sci. 28, 243 (2005)
  • 31. O.Yu. Khyzhum, J. Alloys Comp. 305, 1 (2000)
  • 32. The crystallographic data can be obtained from following references and the Cambridge Crystallographic Data Centre (CCDC), www.ccdc.cam.ac.uk, 12, Union Road, Cambridge CB21EZ, UK

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv116n222kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.