Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | 2 | 197-202

Article title

Use of Quantum Mechanical Methods to Obtain a Bohm-Type Coefficient of Diffusion

Content

Title variants

Languages of publication

EN

Abstracts

EN
A Bohm-type coefficient of diffusion is obtained by means of a procedure starting from the Hamiltonian of a single electron in a dilute plasma in the presence of an external, uniform magnetic field of constant magnitude and an electrical potential that serves to simulate an electrical fluctuation which drives the guiding center drift. Using the concept of the differentiation of operators with respect to time, the formula for the well-known E × B drift velocity is recovered. Finally, the solution of a quantum mechanical equation of motion for the guiding center is found in the quasi-classical approximation to obtain a diffusion coefficient.

Keywords

Year

Volume

116

Issue

2

Pages

197-202

Physical description

Dates

published
2009-08
received
2009-01-15
(unknown)
2009-05-29

Contributors

  • Instituto Nacional de Investigaciones Nucleares, Apartado Postal No. 18-1027, Col. Escandón, México 11801, D.F. México

References

  • 1. D. Bohm, E.H.S. Burhop, H.S.W. Massey, R.W. Williams, in: A Study of the Arc Plasma in the Characteristics of Electrical Discharges in Magnetic Fields, Eds. A. Guthrie, R.W. Wakerling, 1st ed., McGraw Hill, 1949, p. 173
  • 2. I.A. Bernstein, E.A. Frieman, R.M. Kulsrud, M.N. Rosenbluth, Phys. Fluids 3, 136 (1960)
  • 3. L. Spitzer Jr., Phys. Fluids 3, 659 (1960)
  • 4. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed., Vol. I, Plenum Press, New York 1984, p. 190
  • 5. V.S. Belyaev, V.N. Mikhaylov, Laser Phys. II, 957 (2001)
  • 6. K. Miyamoto, Plasma Physics for Nuclear Fusion, The MIT Press, Massachusetts 1980, p. 199, 219
  • 7. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, Vol. I, Wiley, New York 1977
  • 8. Problems in Quantum Mechanics, Ed. D. terHaar, 3rd ed., Pion Ltd, London 1975, p. 39, 260, Problem 12
  • 9. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, Pergamon Press, London 1987, p. 53
  • 10. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, 2nd ed., Pergamon Press, Addison-Wesley, 1965, Eq. (9.1), p. 26
  • 11. F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New York 1965, p. 566
  • 12. F.W. King, University of Wisconsin - Eau Claire, fking@uwec.edu, private communication
  • 13. A.G. Marshall, D.C. Roe, Anal. Chem. 50, 756 (1978)
  • 14. D.C. Roe, A.G. Marshall, Anal. Chem. 50, 764 (1978)
  • 15. L.I. Schiff, Quantum Mechanics, 3rd ed., Mc Graw-Hill, New York 1968, p. 282

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv116n214kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.