Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | 2 | 157-164

Article title

Fractal Transport Phenomena through the Scale Relativity Model

Content

Title variants

Languages of publication

EN

Abstracts

EN
A correspondence between Nottale's scale relativity model and Cresson's mathematical procedures is analyzed. It results that the "synchronization" of the movements at different scales (fractal scale, differential scale etc.) gives conductive type properties to the fractal fluid, while the absence of "synchronization" is inducing properties of convective type. The behavior of a conductive fractal fluid is illustrated through the numerical simulation of plasma diffusion that is generated by laser ablation. Rotational and irrotational convective behaviors of a fractal fluid are established. Particularly, at Compton spatial and temporal scales, the irrotational behavior implies the standard Schrödinger equation.

Keywords

EN

Contributors

author
  • Faculty of Physics, "Al. I. Cuza" University, Blvd. Carol I, no. 11, 700506 Iasi, Romania
author
  • Laboratoire de Physique des Lasers, Atomes et Molécules (UMR 8523), Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France
author
  • Laboratoire de Physique des Lasers, Atomes et Molécules (UMR 8523), Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France
  • Department of Physics, Technical "Gh. Asachi" University, Blvd. Mangeron, no. 64, 700029 Iasi, Romania
author
  • Faculty of Physics, "Al. I. Cuza" University, Blvd. Carol I, no. 11, 700506 Iasi, Romania
  • Laboratoire de Physique des Lasers, Atomes et Molécules (UMR 8523), Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France
author
  • Faculty of Applied Sciences, Politehnica University of Bucharest, Department of Physics I, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
author
  • Laboratoire de Physique des Lasers, Atomes et Molécules (UMR 8523), Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France
  • Department of Physics, Technical "Gh. Asachi" University, Blvd. Mangeron, no. 64, 700029 Iasi, Romania

References

  • 1. L. Nottale, Int. J. Mod. Phys. A 7, 4899 (1992)
  • 2. L. Nottale, Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity, World Scientific, Singapore 1993
  • 3. L. Nottale, Astron. Astrophys. 327, 867 (1997)
  • 4. L. Nottale, Chaos, Solitons Fractals 9, 1051 (1998)
  • 5. L. Nottale, Chaos, Solitons Fractals 10, 459 (1999)
  • 6. L. Nottale, Chaos, Solitons Fractals 16, 539 (2003)
  • 7. D. Da Rocha, L. Nottale, Chaos, Solitons Fractals 16, 565 (2003)
  • 8. L. Nottale, Chaos, Solitons Fractals 25, 797 (2005)
  • 9. G.N. Ord, J. Phys. A 16, 1869 (1983)
  • 10. Quantum Mechanics, Diffusion and Chaotic Fractals, Eds. M.S. El Naschie, O.E. Rösler, I. Prigogine, Elsevier, Oxford 1995
  • 11. M.S. El Naschie, Chaos, Soliton Fractals 22, 495 (2004)
  • 12. M.S. El Naschie, Chaos, Soliton Fractals 14, 649 (2002)
  • 13. M.S. El Naschie, Chaos, Soliton Fractals 12, 1167 (2002)
  • 14. M.S. El Naschie, Chaos, Soliton Fractals 25, 969 (2005)
  • 15. M.S. El Naschie, Chaos, Soliton Fractals 27, 9 (2006)
  • 16. M.N. Célérier, L. Nottale, J. Phys. A, Math. Gen. 37, 931 (2004)
  • 17. L. Nottale, M.N. Célérier, arXiv:0711.2418v1 (2009)
  • 18. L. Nottale, arXiv:0901.1270 (2009)
  • 19. L. Nottale, J. Phys. A, Math. Theor. 42, 275306 (2009)
  • 20. B.B. Mandelbrot, Fractals: Form, Chance and Dimension, W.H. Freeman, San Francisco 1977
  • 21. B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, San Francisco 1983
  • 22. B.B. Mandelbrot, Fractal and Scaling in Finance, Springer-Verlag, Berlin 1997
  • 23. I. Gottlieb, M. Agop, G. Ciobanu, A. Stroe, Chaos, Solitons Fractals 30, 380 (2006)
  • 24. P. Mora, Phys. Rev. Lett. 90, 185002 (2003)
  • 25. M. Agop, A. Harabagiu, P. Nica, Acta Phys. Pol. A 113, 1557 (2008)
  • 26. M. Agop, P. Nica, P.D. Ioannou, O. Malandraki, I. Gavanas-Pahomi, Chaos, Solitons Fractals 34, 1704 (2007)
  • 27. L. Nottale, Chaos, Solitons Fractals 6, 399 (1995)
  • 28. L. Nottale, Chaos, Solitons Fractals 7, 877 (1996)
  • 29. J. Cresson, Int. J. Geometric Meth. Mod. Phys. 3, 1395 (2006)
  • 30. J. Cresson, J. Math. Anal. Appl. 307, 48 (2005)
  • 31. J. Cresson, F. Ben Adda, Chaos, Solitons Fractals 19, 1323 (2004)
  • 32. J. Cresson, J. Math. Phys. 44, 4907 (2003)
  • 33. J. Cresson, Chaos, Solitons Fractals 14, 553 (2002)
  • 34. J. Cresson, F. Ben Adda, J. Math. Anal. Appl. 262, 721 (2001)
  • 35. J. Cresson, J.-N. Denarie, in: Noise, Oscillators and Algebraic Randomness Ed. M. Planat, Springer-Verlag, Berlin 2000, p. 305
  • 36. J. Cresson, F. Ben Adda, C.R. Acad. Sci. Paris 330, 261 (2000)
  • 37. L. Spitzer, Physics of Fully Ionized Gases, Interscience, New York 1962
  • 38. O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, McGraw-Hill, New York 1991
  • 39. Y. Imry, Introduction to Mesoscopic Physics, Oxford University Press, Oxford 2002
  • 40. D.K. Ferry, S.M. Goodnick, Transport in Nanostructures, Cambridge University Press, Cambridge 1997

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv116n208kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.