Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 116 | 2 | 114-118

Article title

Probability Structure of Time Fractional Schrödinger Equation

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We consider the motion of a particle under the influence of a real potential within the framework of time fractional Schrödinger equation in 1 + 1 dimensions. For the basis states we obtain a simple expression for the probability current equation. In the limit where the order of fractional derivative is close to unity we find a fluctuating probability density for the basis states. We also provide a compact expression for the time rate of change of the probability density in this case. For the special case where the order of fractional derivative is equal to ½ we compute the probability density.

Keywords

EN

Contributors

author
  • Department of Physics, Faculty of Basic Science, University of Mazandaran, P.O. Box 47416-1467, Babolsar, Iran

References

  • 1. N. Laskin, Phys. Lett. A 268, 298 (2000)
  • 2. N. Laskin, Phys. Rev. E 62, 3135 (2000)
  • 3. L. Nottale, Fractal Space-Time and Microphysics, World Sci., Singapore 1993
  • 4. F. Ben Adda, J. Cresson, Chaos, Solitons, Fractals 19, 1323 (2004)
  • 5. M.A. Lohe, A. Thilagam, J. Phys. A, Math. Gen. 37, 6181 (2004)
  • 6. M.A. Lohe, Rep. Math. Phys. 57, 131 (2006)
  • 7. A. Matos-Abiague, J. Phys. A, Math. Gen. 34, 11059 (2001)
  • 8. M. Naber, J. Math. Phys. 45, 3339 (2004)
  • 9. V.E. Tarasov, G.M. Zaslavsky, Physica A 368, 399 (2006)
  • 10. A. Tofighi, H. Nasrolahpour, Physica A 374, 41 (2007)
  • 11. R. Meltzer, J. Klafter, Phys. Rep. 339, 1 (2000)
  • 12. A. Tofighi, A. Golestani, Physica A 387, 1807 (2008)
  • 13. H. Bateman, A. Erdeli, Tables of Integral Transform, Vol. 1, McGraw-Hill, New York 1954
  • 14. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Eds. M.A. Abramowitz, I.A. Stegun, 9th ed., Dover, New York 1972
  • 15. F. Mainardi, R. Gorenflo, J. Comput. Appl. Math. 118, 283 (2000)
  • 16. M. Bhatti, Int. J. Contemp. Math. Sci. 2, 943 (2007)
  • 17. M. Bhatti, L. Debnath, Int. J. Pure Appl. Math. 15, 1 (2004)
  • 18. S.C. Lim, S.V. Muniandy, Phys. Lett. A 324, 396 (2004)
  • 19. S.C. Lim, Physica A 363, 269 (2006)
  • 20. E. Goldfain, Chaos, Solitons, Fractals 19, 1023 (2001)
  • 21. E. Goldfain, Chaos, Solitons, Fractals 28, 913 (2006)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv116n202kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.