Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Carbon nanotubes can be obtained from variety of the molecular precursors in chemical vapor deposition processes. The low growth temperatures strongly increase the compatibility of carbon nanotubes growth with current complementary metal-oxide-silicon technology for carbon nanotubes-based electronics. Here, we show the low temperature growth of multiwalled carbon nanotubes in acetylene chemical vapor deposition with Fe-Co/MgO. The catalyst mix was active already at 450°C. The higher temperatures growth (500°C and 550°C) were also tested in order to estimate the best thermal condition in respect of the sample quality (via thermogravimetric analyzer) and the sample relative purity (via resonance Raman spectroscopy). High resolution transmission electron microscope was used to determine the morphology of the samples.
Discipline
- 81.07.De: Nanotubes
- 78.30.-j: Infrared and Raman spectra(for vibrational states in crystals and disordered systems, see 63.20.-e and 63.50.-x, respectively; for Raman spectra of superconductors, see 74.25.nd)
- 61.46.Np: Structure of nanotubes (hollow nanowires)(see 61.48.De for carbon nanotubes, boron nanotubes, and other related systems)
- 61.46.Fg: Nanotubes
Journal
Year
Volume
Issue
Pages
93-95
Physical description
Dates
published
2009-07
Contributors
author
- Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical Engineering and Chemical Technology, Szczecin University of Technology, Pułaskiego 10, 70-322 Szczecin, Poland
author
- Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical Engineering and Chemical Technology, Szczecin University of Technology, Pułaskiego 10, 70-322 Szczecin, Poland
References
- 1. S. Iijima, Nature 354, 56 (1991)
- 2. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381, 678 (1996)
- 3. E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 277, 1971 (1997)
- 4. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Science 280, 1744 (1998)
- 5. T.W. Ebbesen, P.M. Ajayan, Nature 358, 220 (1992)
- 6. A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, Xu.Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Science 273, 483 (1996)
- 7. M. Joseyacaman, M. Mikiyoshida, L. Rendon, J.G. Santiesteban, Appl. Phys. Lett. 62, 657 (1993)
- 8. M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, Carbon 33, 873 (1995)
- 9. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, N. Provencio, Science 282, 1105 (1998)
- 10. R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, Chem. Phys. Lett. 303, 467 (1999)
- 11. H.J. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 260, 471-475 (1996)
- 12. S. Huang, L. Dai, A.W.H. Mau, Adv. Mater. 14, 1140 (2002)
- 13. Y.S. Min, E.J. Bae, B.S. Oh, D. Kang, W. Park, J. Am. Chem. Soc. 127, 12498 (2005)
- 14. L. Delzeit, I. MaAninch, B.A. Cruden, D. Hash, B. Chen, J. Han, M. Meyyappan, J. Appl. Phys. 91, 6027 (2002)
- 15. J.I.B. Wilson, N. Scheerbaum, S. Karim, N. Polwart, P. John, Y. Fan, A.G. Fitzgerald, Diamond Relat. Mater. 11, 918 (2002)
- 16. A. Bachmatiuk, E. Borowiak-Palen, M.H. Rümmeli, C. Kramberger, H.-W. Hübers, T. Gemming, T. Pichler, R.J. Kalenczuk, Nanotechnology 18, 275610 (2007)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv116n122kz