Journal
Article title
Title variants
Languages of publication
Abstracts
The simulation of the Raman spectra of nanostructured materials, where the effects of frequency shift and asymmetric broadening of the Raman modes play an important role, can be very useful in systematic characterization of these materials. Use of phonon confinement model for calculating Raman spectra of different nanomaterials is considered both from the viewpoint of different confinement function and the confinement strength, as well as the dimensionality of the confinement model. The phonon dispersion relations and the choice of their approximation are also studied. The influence of particle size distribution on the shape of the calculated spectra is discussed and contributions of Gaussian and asymmetric Gaussian distribution are compared. The effects of average and inhomogeneous strain on the behavior of simulated Raman spectra are also discussed. The results of the phonon confinement model are compared to the experimental spectra of CeO_2 and anatase TiO_2 nanopowders.
Discipline
- 81.07.Wx: Nanopowders
- 63.22.-m: Phonons or vibrational states in low-dimensional structures and nanoscale materials
- 78.30.-j: Infrared and Raman spectra(for vibrational states in crystals and disordered systems, see 63.20.-e and 63.50.-x, respectively; for Raman spectra of superconductors, see 74.25.nd)
- 07.05.Tp: Computer modeling and simulation
Journal
Year
Volume
Issue
Pages
51-54
Physical description
Dates
published
2009-07
Contributors
author
- Center for Solid State Physics and New Materials, Institute of Physics, Pregrevica 118, Belgrade 11080, Serbia
author
- Center for Solid State Physics and New Materials, Institute of Physics, Pregrevica 118, Belgrade 11080, Serbia
author
- Center for Solid State Physics and New Materials, Institute of Physics, Pregrevica 118, Belgrade 11080, Serbia
author
- Center for Solid State Physics and New Materials, Institute of Physics, Pregrevica 118, Belgrade 11080, Serbia
References
- 1. H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)
- 2. I.I. Campbell, P.M. Fauchet, Solid State Commun. 58, 739 (1986)
- 3. A.K. Arora, M. Rajalakshmi, T. R. Ravindran, V. Sivasubramanian, J. Raman Spectrosc. 38, 604 (2007)
- 4. M.J. Šćepanović, M. Grujić-Brojčin, Z. Dohčević-Mitrović, Z.V. Popović, J. Optoel. Adv. Mater. 9, 178 (2007)
- 5. D. Bersani, P.P. Lottici, X.Z. Ding, Appl. Phys. Lett. 72, 73 (1998)
- 6. M. Ivanda, S. Musić , M. Gotić , A. Turković , A.M. Tonejc, O. Gamulin, J. Mol. Struct. 480-481, 641 (1999)
- 7. K.R. Zhu, M.S. Zhang, Q. Chen, Z. Yin, Phys. Lett. A 340, 220 (2005)
- 8. M.J. Šćepanović, M. Grujić-Brojčin, Z. Dohčević-Mitrović, Z.V. Popović, Appl. Phys. A 86, 365 (2007)
- 9. M. Mikami, S. Nakamura, O. Kitao, H. Arakawa, Phys. Rev. B 66, 1552131 (2002)
- 10. J.E. Spaneir, R.D. Robinson, F. Zhang, S.-W. Chan, I.P. Herman, Phys. Rev. B 64, 2454071 (2001)
- 11. M. J. Šćepanović, M. Grujić-Brojčin, Z. Dohčević-Mitrović, Z.V. Popović, Sci. Sintering 41, 67 (2009)
- 12. V. Swamy, D. Menzies, B.C. Muddle, A. Kuznetsov, L.S. Dubrovinsky, Appl. Phys. Lett. 88, 243103 (2006)
- 13. F. Zhang, S.-W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Appl. Phys. Lett. 80, 127 (2002)
- 14. Z.D. Dohčević-Mitrović, M.J. Ćepanović, M.U. Grujić-Brojčin, Z.V. Popović, S.B. Boković, B.M. Matović, M.V. Zinkevich, F. Aldinger, Solid State Commun. 137, 387 (2006)
- 15. M.J. Šćepanović, M.U. Grujić-Brojčin, Z.D. Dohčević-Mitrović, Z.V. Popović, Mater. Sci. Forum 518, 101 (2006)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv116n109kz