PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 115 | 5 | 944-946
Article title

Effect of Growth Parameters on Composition Distribution in Superlattice-in-Well Structure by Submonolayer Deposition Technique

Content
Title variants
Languages of publication
EN
Abstracts
EN
The superlattice-in-well structures were grown using a cycled submonolayer AlGaAs/GaAs deposition technique. The optical quality of Al-Ga interdiffusion in AlGaAs/GaAs superlattice was investigated by measuring the photoluminescence of samples grown at temperature from 610°C to 630°C. Results show that Al composition can be modulated under some growth temperature or period. Effect of the growth interrupt in the growth process of superlattice on film optical quality is also discussed. Especially, the role played by the period of superlattice in the process of obtaining high quality film material with low composition is investigated in detail.
Keywords
Contributors
author
  • Tianjin Institute of Urban Construction, Tianjin 300384, China
  • The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials Ministry of Education, TEDA Applied Physics School, Nankai University, Tianjin 300475, China
author
  • The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials Ministry of Education, TEDA Applied Physics School, Nankai University, Tianjin 300475, China
  • The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials Ministry of Education, TEDA Applied Physics School, Nankai University, Tianjin 300475, China
author
  • The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials Ministry of Education, TEDA Applied Physics School, Nankai University, Tianjin 300475, China
References
  • 1. M. Müller, T. Lehnhardt, K. Rößner, M. Hümmer, R. Werner, A. Forchel, Nanotechnol. 18, 265302 (2007)
  • 2. Guo-Zhi Jia, Jiang-Hong Yao, Yong-Chun Shu, Xiao-Dong Xing, Biao Pi, Appl. Surf. Sci. 255 4452 (2009)
  • 3. Guo-Zhi Jia, Jiang-Hong Yao, Yong-Chun Shu, Xiao-Dong Xing, Biao Pi, Acta Phys. Pol. A 114, 919 (2008)
  • 4. G.É. Tsyrlin, V.N. Petrov, V.G. Dubrovskii, N.K. Polyakov, S.Ya. Tipisev, A.O. Golubok, N.N. Ledentsov, Semiconductors 31, 768 (1997)
  • 5. V. Alberts, Semicond. Sci. Technol. 8, 2125 (1993)
  • 6. J.S. Tsang, C.P. Lee, S.H. Lee, K.L. Tsai, H.R. Chen, J. Appl. Phys. 77, 4302 (1995)
  • 7. J. Schörmann, S. Potthast, D.J. As, K. Lischka, Appl. Phys. Lett. 90, 041918 (2007)
  • 8. E. Herbert Li, Appl. Phys. Lett. 69, 460 (1996)
  • 9. S.F. Wee, M.K. Chai, K.P. Homewood, J. Appl. Phys. 82, 4842 (1997)
  • 10. B.L. Olmsted, S.N. Houde-Walter, Appl. Phys. Lett. 60, 368 (1992)
  • 11. K.J. Beernink, D. Sun, D.W. Treat, B.P. Bour, Appl. Phys. Lett. 66, 3597 (1995)
  • 12. S.F. Wee, M.K. Chai, K.P. Homewood, W.P. Gillin, J. Appl. Phys. 82, 4842 (1997)
  • 13. W. Xia, C.C. Han, S.A. Pappert, S.N. Hsu, Z.F. Guan, P.K.L. Yu, S.S. Lau, Appl. Phys. Lett. 58, 625 (1991)
  • 14. T.Y. Tan, U. Gösele, Appl. Phys. Lett. 52, 1240 (1988)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv115n518kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.