Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Effects of strontium doping on electrical properties of gadolinium-doped ceria were investigated. The Ce_{0.8-x}Gd_{0.2}Sr_{x}O_{2-δ} (0.0 ≤ x ≤ 0.1) compositions were prepared by sol-gel method and sintered at 1300°C for 8 h, the bulk densities were over 93% of theoretical density. These results were consistent with scanning electron microscope. The crystallite size of these materials was determined using the X-ray powder diffractometer and the sizes range from 19.4 nm to 24.4 nm. From the experimental results, it was observed that the composition Ce_{0.8-x}Gd_{0.2}Sr_{x}O_{2-δ} (x=0.02) exhibits higher conductivity (23.6× 10^{-3} S cm^{-1}) and minimum activation energy (0.83 eV) at 700°C. This composition is thus a potential candidate for use as electrolyte applications in intermediate temperature solid oxide fuel cells.
Discipline
- 82.47.Ed: Solid-oxide fuel cells (SOFC)
- 65.40.De: Thermal expansion; thermomechanical effects
- 66.10.Ed: Ionic conduction
- 82.45.Gj: Electrolytes(for polyelectrolytes, see 82.35.Rs and 82.45.Wx; see also 66.30.H- Self-diffusion and ionic conduction in nonmetals)
- 81.20.Fw: Sol-gel processing, precipitation(for reactions in sol-gels, see 82.33.Ln; for sol-gels as disperse system, see 82.70.Gg)
- 82.45.Xy: Ceramics in electrochemistry(see also 81.05.Je Ceramics and refractories, and 81.05.Mh Cermets, ceramic and refractory composites in specific materials)
Journal
Year
Volume
Issue
Pages
909-913
Physical description
Dates
published
2009-05
received
2009-01-30
(unknown)
2009-03-30
Contributors
author
- Department of Physics, University College of Science, Osmania University, Hyderabad, 500 ,007 India
author
- Department of Physics, University College of Science, Osmania University, Hyderabad, 500 ,007 India
References
- 1. A.S. Arico, A. Sin, E. Kopnin, Y. Dubitsky, A. Zaopo, D. La Rosa, L.R. Gullo, V. Antonucci, J. Power Sources 164, 300 (2007)
- 2. I. Riess, Solid State Ionics 176, 1264 (2005)
- 3. Z. Tianshu, P. Hing, H. Haung, J. Kilner, Solid State Ionics 148, 567 (2002)
- 4. J. Larmine, A. Dicks, Fuel Cell Systems Explained, Wiley, London 2000, p. 166
- 5. J.P.P. Huijsmans, Curr. Opin. Solid State Mater. Sci. 5, 317 (2001)
- 6. H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, J. Appl. Electro-Chem. 185, 27 (1988)
- 7. B.C.H. Steele, Solid State Ionics 129, 95 (2000)
- 8. J. Van Herle, D. Seneviratne, A.J. McEvoy, J. Eur. Ceram. Soc. 19, 837 (1999)
- 9. J. Van Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, Solid State Ionics 86-88 1255 (1996)
- 10. H. Inaba, H. Tagawa, Solid State Ionics 83, 1 (1996)
- 11. J.M. Ralph, J. Przydatek, J.A. Kilner, T. Seguelong, Ber. Bunsenges. Phys. Chem. 101, 1403 (1997)
- 12. H. Yoshida, H. Deguchi, K. Miura, M. Horiuchi, Solid State Ionics 140, 191 (2001)
- 13. T. Mori, J. Drennan, J.H. Lee, J.G. Li, T. Ikegami, Solid State Ionics 154-155, 461 (2002)
- 14. H. Yoshida, T. Inagaki, K. Miura, M. Inaba, Z. Ogumi, Solid State Ionics 160, 109 (2003)
- 15. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)
- 16. J.E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969)
- 17. H. Yoshida, T. Inagaki, K. Miura, M. Inaba, Z. Ogumi, Solid State Ionics 160, 109 (2003)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv115n511kz