Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 115 | 5 | 890-900

Article title

Thermoacoustical Excess Properties of Binary Liquid Mixtures - A Comparative Experimental and Theoretical Study

Content

Title variants

Languages of publication

EN

Abstracts

EN
Specific heat ratio (γ), pseudo-Grüneisen parameter (Γ), heat capacity (C_p) and effective Debye temperature (θ_{D}) for binary system of tetrahydrofuran with o-cresol and methanol respectively, were calculated using the experimentally measured densities, velocities and viscosities of the pure liquids and their mixtures over the whole composition range and at T = 293, 303, 313 K. The excess pseudo-Grüneisen parameter (Γ ^{E}), excess molar isentropic compressibility (K_{s}^{E}) and excess acoustic impedance (Z^{E}) were also calculated. The excess deviation functions have been correlated using Redlich-Kister polynomial equation. The observed values of the excess parameters plotted against the mole fraction of tetrahydrofuran have been explained on the basis of intermolecular interaction suggesting strong interaction in tetrahydrofuran + o-cresol than in tetrahydrofuran + methanol. Partial molar isentropic compressibility at infinite dilution and their excess values were calculated for each component. Sanchez theory, Goldsach-Sarvas volume fraction statistics, Sudgen's relation, Flory-Patterson-Rastogi and Brock and Bird model were used with the Aurebach relation to compute theoretically the values of ultrasonic velocities at varying temperatures. The velocity deviations were estimated in terms of average percentage deviations. Internal pressure for both the systems were calculated theoretically and discussed on the basis of relative applicability of the models in theoretical estimations. The isothermal compressibility (k_T), for these binary mixtures were theoretically evaluated by using the Flory statistical theory and five hard sphere models and compared with the experimental values.

Keywords

EN

Contributors

author
  • Department of Physics, University of Lucknow, Lucknow-226007, India
author
  • Department of Physics, University of Lucknow, Lucknow-226007, India
author
  • Department of Physics, University of Lucknow, Lucknow-226007, India
author
  • Department of Physics, University of Lucknow, Lucknow-226007, India
author
  • Department of Physics, University of Lucknow, Lucknow-226007, India

References

  • 1. R.E. Kirk, D.F. Othmer, Encyclopedia of Chemical Technology, Vol. 10, Interscience, New York 1966, p. 237
  • 2. J.F. Garst, in: Solute-Solvent Interactions, Eds. J.F. Coetzee, C.D. Ritchie, Marcel Dekker, New York 1969, p. 539
  • 3. OECD SIDS o-CRESOL, UNEP Publications
  • 4. S. Parveen, D. Shukla, S. Singh, M. Gupta, J.P. Shukla, Appl. Acoust. 70, 507 (2009)
  • 5. M. Blackman, Encyclopedia of Physics 7, 328 (1955)
  • 6. C. Kittel, Introduction to Solid State Physics, Wiley, New York 1968
  • 7. K.F. Herztold, T.A. Litovitz, Absorption and Dispersion of Ultrasonic Waves, Academic Press Inc., New York 1959
  • 8. J. Canosa, A. Rodriguez, J. Toju, J. Chem. Eng. Data 46, 846 (2001)
  • 9. F. Commelli, S. Ottani, R. Francesconi, C. Castellari, J. Chem. Eng. Data 47, 93 (2002)
  • 10. S.B. Alisha, M.C.S. Suba, K.C. Rao, J. Pure Appl. Ultrason. 23, 26 (2001)
  • 11. J.A. Riddick, W.B. Bunger, T.K. Sakana, Organic Solvents: Physical Properties and Methods of Purification, 4th ed., Wiley Interscience, New York 1986
  • 12. S. Ottani, D. Vitalini, F. Comelli, C. Castellari, J. Chem. Eng. Data 47, 1197 (2002)
  • 13. H. Wang, W. Liu, J. Huang, J. Chem. Thermodynamics 36, 743 (2004)
  • 14. R. Aurebach, Experimentia 4, 473 (1948)
  • 15. I.C. Sanchez, J. Chem. Phys. 79, 405 (1984)
  • 16. D.E. Goldsach, C.D. Sarvas, Can. J. Chem. 59, 2968 (1981)
  • 17. R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 4th ed., Mc Graw-Hill, New York 1976
  • 18. D. Patterson, A.K Rastogi, J. Phys. Chem. 74, 1067 (1970)
  • 19. I. Prigogine, L. Saraga, J. Chem. Phys. 49, 399 (1952)
  • 20. J.D. Pandey, G.P. Dubey, N. Tripathi, J. Int. Acad. Phys. Sci. 1, 117 (1997)
  • 21. R.J. Buehler, R.H. Wentorff, J.O. Hirschfelder, C.F. Curtiss, J. Chem. Phys. 19, 61 (1951)
  • 22. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Liquids, Wiley, New York 1954
  • 23. P.J. Flory, J. Am. Chem. Soc. 87, 1833 (1965)
  • 24. A. Abe, P.J. Flory, J. Am. Chem. Soc. 87, 1838 (1965)
  • 25. A. Ali, A.K. Nain, D. Chand, B. Lal, Phys. Chem. Liquids 45, 79 (2007)
  • 26. E.J. Thiele, J. Chem. Phys. 39, 474 (1963)
  • 27. J.L. Lebowitz, H.L. Frisch, E.J. Helford, J. Chem. Phys. 51, 1037 (1969)
  • 28. E.A. Guggenheim, Mol. Phys. 9, 43 (1965)
  • 29. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1966)
  • 30. W.G. Hoover, E.H. Ree, J. Chem. Phys. 46, 4181 (1966)
  • 31. M.D. Perez, L. Segade, C. Franjo, O. Cabeza, E. Jiminez, Fluid Phase Equilib. 9, 232 (2005)
  • 32. E. Jiminez, M. Cabanas, L. Segade, S.G. Garbel, H. Casas, Fluid Phase Equilib. 180, 151 (2001)
  • 33. E. Rilo, S. Freire, L. Segade, O. Cabeza, C. Franjo, E. Jiminez, J. Chem. Thermodyn. 25, 839 (2003)
  • 34. D.L. Lide, CRC Handbook of Chemistry and Physics, 76th ed., CRC Press, USA 1995-96, p. 6-54, 155
  • 35. J.F. Coetzee, T.H. Chang, Pure Appl. Chem. 57, 633 (1985)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv115n508kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.