Preferences help
enabled [disable] Abstract
Number of results
2009 | 115 | 5 | 873-879
Article title

Modeling the Dynamic Emission of a Polarized Cr^{4+}:YAG Crystal Investigated by Double-Pulse Pumping Generated by a Nd-Laser

Title variants
Languages of publication
A mathematical model describing the dynamic emission of intracavity polarized isotropic Cr^{4+}:YAG solid-state saturable absorber was developed. This model considers double pumping laser pulses to simulate the actions of Cr^{4+}:YAG as a dual Q-switched crystal (1.06 μm) and lasing medium (1.4 μm). The model describes the time evolution of interaction between the pumping laser pulse, partial polarizer and the polarized saturable absorber. The analysis of the polarization process is based on the assumption that at each moment of lasing evolution, the state of polarization represented by an eigenstate corresponds to the lowest radiation losses state. The model offers a simple mechanism for studying the kinetics of the pulsed lasers and the influence of the variations of the pumping laser power and nonlinear anisotropy parameter on the characteristics of the output laser pulses 1.06 μm and 1.4 μm. The angular rotation of the passive switch Cr^{4+}:YAG reveals that the transmission of the polarized 1.06 μm laser radiation is strongly anisotropic in the saturation regime. The suggested model estimates the transmission of pumping laser density of the polarized light 1.06 μm radiation as a function of nonlinear anisotropy parameter, temporal behavior of the relative population inversion of Nd-laser, population inversion of the different polarized levels of Cr^{4+}:YAG pulsed laser and the output laser pulse densities under impact of different values of the nonlinear anisotropy which is due to the self-induced anisotropy of its saturated absorption.
  • Atomic Energy Commission, P.O. Box 6091, Damascus, Syria
  • Atomic Energy Commission, P.O. Box 6091, Damascus, Syria
  • 1. R.T. White, I.T. Mc Kinnie, Opt. Express 3, 298 (1998)
  • 2. V. Shcheslavsky, N. Zhavoronkov, V. Petrov, F. Noack, M. Bouvier, IEEE J. Quantum Electron. 35, 1123 (1999)
  • 3. G. Xiao, J.H. Lim, S. Yang, E.V. Stryland, M. Bass, L. Weichman, IEEE J. Quantum Electron. 35, 1086 (1999)
  • 4. D.M. Calistru, S.G. Demos, R.R. Alfano, Phys. Rev. Lett. 78, 374 (1997)
  • 5. N.N. Il'ichev, A.V. Kir'yanov, P.P. Pashinin, in: Nonlinear Optics A Posteriori Materials, Fundamentals and Applications Topical Meeting 1998, Vol. 10, Kauai (HI) USA, p. 113
  • 6. H. Eilers, W.M. Dennis, W.M. Yen, S. Kuck, K. Peterman, G. Huber, W. Jia, IEEE J. Quantum Electron. 29, 2508 (1993)
  • 7. A.V. Kir'yanov, V.A. Aboites, N.N. Il'ichev, I.V. Mel'nikov, Opt. Soc. Am. 329, 1657 (1999)
  • 8. A.V. Kir'yanov, V. Aboites, N.N. Il'ichev, Proc. SPIE 4064, 49 (2000)
  • 9. H. Eilers, K.R. Hoffman, W.M. Dennis, S.M. Jacobsen, W.M. Yen, Appl. Phys. Lett. 61, 2958 (1992)
  • 10. D. Mayorga-Cruz, I.V. Mel'nikov, Opt. Express 9, 428 (2001)
  • 11. B. Abdul Ghani, M. Hammadi, J. Opt. A, Pure Appl. Opt. 8, 229 (2006)
  • 12. A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, IEEE J. Quantum Electron. 35, 1548 (1999)
  • 13. V.B. Gripkovski, Semiconductor Lasers, Izdatelstvo Universitetskoe, Minsk 1988 (in Russian)
  • 14. E. Collett, Polarized Light: Fundamentals and Applications, Marcel Dekker, New York 1993
  • 15. W. Koechner, Solid State Laser Engineering, Springer Verlag, Berlin 1988
  • 16. B.G. Korenev, Introduction to Theory of the Bessel Function, Nakladatelvi technicke literatury, Praha 1977 (in Czech language)
  • 17. N.N. Il'ichev, A.V. Kir'yanov, E.S. Gulyamova, P.P. Pashinin, Quantum Electron. 27, 298 (1997)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.