Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 115 | 3 | 653-655

Article title

Derivation of von Weizsäcker Equation Based οn Green-Gauss Theorem

Content

Title variants

Languages of publication

EN

Abstracts

EN
A simple and short derivation of von Weizsäcker equation for kinetic energy functional is presented. The derivation is based on the Green-Gauss theorem and is valid for one-electron systems. In the proof the asymptotic behavior of wave function for the finite systems was used. Two results important for kinetic energy functional evaluation are also derived as consequences of the Green-Gauss theorem.

Keywords

EN

Contributors

author
  • Interdisciplinary Centre for Materials Modelling, Pawińskiego 5a, 02-106 Warsaw, Poland
author
  • Institute of High Pressure Physics of the Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland

References

  • 1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)
  • 2. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)
  • 3. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford 1989
  • 4. W. Koch, M.C. Holthausen, A Chemist's Guide to Density Functional Theory, Wiley, New York 2000
  • 5. Y.A. Wang, E.A. Carter, Progress in Theoretical Chemistry and Physics, Kluwer, Dordrecht 2000, p. 117
  • 6. J. Nocedal, S.J. Wright, Numerical Optimization, Springer Series in Operations Research, Springer, New York 1999
  • 7. B. Zhou, Y.A. Wang, J. Chem. Phys. 128, 084101 (2008)
  • 8. B. Zhou, Y.A. Wang, J. Chem. Phys. 124, 081107 (2006)
  • 9. B. Zhou, Y.A. Wang, Int J. Quant. Chem. 107, 2995 (2007)
  • 10. H. Eschrig, The Fundamentals of Density Functional Theory, Teubner, Stuttgart 1996
  • 11. N.H. March, Electron Density Theory of Atoms and Molecules, Academic, London 1992
  • 12. G.M. Fichtenholz, Differential- und Integralrechnung, Harri, Berlin 1990
  • 13. R.L. Liboff, Introductory Quantum Mechanics, Addison Wesley, New York 1987
  • 14. I. Babuska, T. Strouboulis, The Finite Element Method and Its Reliability, Oxford University Press, Oxford 2001
  • 15. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics, Springer, New York 1988
  • 16. Z. Romanowski, Modelling Simul. Mater. Sci. Eng. 16, 015003 (2008)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv115n310kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.