PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 115 | 2 | 548-551
Article title

Energy Dissipation in the AFM Elasticity Measurements

Content
Title variants
Languages of publication
EN
Abstracts
EN
Nowadays, it is well established that changes of cell stiffness observed by atomic force microscopy are linked with the cell cytoskeleton. Its structural and functional alterations are underlying major diseases such as cancer, inflammation or neurodegenerative disorders. So far, the use of atomic force microscopy is mostly focused on the determination of the Young modulus using the modified Hertz model. It can quantitatively describe the elastic properties of living cells, however, its value is burdened by the fact that cells are neither isotropic nor homogeneous material. Often, during the atomic force microscopy measurements, the hysteresis between the loading and unloading curves are observed which indicates the dissipation of an energy. In our studies, the index of plasticity was introduced to enumerate such effect during a single loading-unloading cycle. As the results show, such approach delivers an additional parameter describing the mechanical state of cell cytoskeleton. The analysis was performed on test samples where the mechanical properties of the melanoma cells were changed by glutaraldehyde and cytochalasin D treatments. The non-treated cells were compared with fibroblasts.
Keywords
EN
Publisher

Year
Volume
115
Issue
2
Pages
548-551
Physical description
Dates
published
2009-02
Contributors
author
  • Institute of Nuclear Physics, Radzikowskiego 152, 32-341 Cracow, Poland
  • Institute of Nuclear Physics, Radzikowskiego 152, 32-341 Cracow, Poland
author
  • Institute of Nuclear Physics, Radzikowskiego 152, 32-341 Cracow, Poland
author
  • Institute of Nuclear Physics, Radzikowskiego 152, 32-341 Cracow, Poland
References
  • 1. D. Hanahan, R.A. Weinberg, Cell 100, 57 (2000)
  • 2. S. Suresh, Acta Biomater. 3, 413 (2007)
  • 3. A. Ben-Ze'ev, Curr. Opin. Cell Biol. 9, 99 (1997)
  • 4. P. Parot, Y.F. Dufrene, P. Hinterdorfer, C. Le Grimellec, D. Navajas, J.L. Pellequer, S. Scheuring, J. Mol. Recognit. 20, 418 (2007)
  • 5. R.M. Ezzell, W.H. Goldmann, N. Wang, N. Parasharama, D.E. Ingber, Exp. Cell Res. 231, 14 (1997)
  • 6. M. Lekka, P. Laidler, J. Ignacak, M. Łabędź, J. Lekki, H. Struszczyk, Z. Stachura, A.Z. Hrynkiewicz, Biochim. Biophys. Acta 1540, 127 (2001)
  • 7. J. Domke, S. Dannohl, W.J. Parak, O. Mueller, W.K. Aicher, M. Radmacher, Colloids Surf. B 19, 367 (2000)
  • 8. M. Radmacher, IEEE Eng. Med. Biol. Magn. 16, 47 (1997)
  • 9. I. Juhasz, S.M. Albelda, D.E. Elder, G.F. Murphy, K. Adachi, D. Herlyn, I.T. Valyi-Nagy, M. Herlyn, Am. J. Pathol. 143, 528 (1993)
  • 10. M. Lekka, J. Lekki, M. Marszałek, P. Golonka, Z. Stachura, B. Cleff, A.Z. Hrynkiewicz, Appl. Surf. Sci. 141, 345 (2000)
  • 11. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)
  • 12. B.J. Briscoe, L. Fiori, E. Pelillo, J. Phys. D, Appl. Phys. 31, 2395 (1998)
  • 13. S. Kasas, G. Dietler, Pflugers Arch. 456, 13 (2008)
  • 14. M. Schliwa, J. Cell Biol. 92, 79 (1982)
  • 15. H.W. Wu, T. Kuhn, V.T. Moy, Scanning 20, 389 (1998)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv115n222kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.