Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
An electrochemically-gated junction field-effect transistor with metallic conducting indium tin oxide nanoparticle array as active layer is reported. Fabrication of a field-effect device with a degenerative semiconductor like indium tin oxide (carrier concentration 10^{20}-10^{21} cm^{-3}) is possible by exploiting the high surface-to-volume ratio of nanoparticles and high surface charge density achievable by electrochemical gating. The on/off ratio obtained is 325 although the applied potential was restricted to the capacitive double layer region (to ensure high repeatability) without allowing redox reactions to take place at the interface.
Discipline
- 82.45.Vp: Semiconductor materials in electrochemistry(see also 81.05.Cy Elemental semiconductors; 81.05.Dz II-VI semiconductors; 81.05.Ea III-V semiconductors; 81.05.Fb Organic semiconductors; 81.05.Gc Amorphous semiconductors in specific materials)
- 73.63.Bd: Nanocrystalline materials
- 85.30.Tv: Field effect devices
- 81.07.Bc: Nanocrystalline materials
- 72.15.Eb: Electrical and thermal conduction in crystalline metals and alloys
Journal
Year
Volume
Issue
Pages
473-476
Physical description
Dates
published
2009-02
Contributors
author
- Institute of Nanotechnology, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, D-76021 Karlsruhe, Germany
- Center for Functional Nanostructures, Universität Karlsruhe, 76131 Karlsruhe, Germany
author
- Institute of Nanotechnology, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, D-76021 Karlsruhe, Germany
author
- Institute of Nanotechnology, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, D-76021 Karlsruhe, Germany
author
- Institute of Nanotechnology, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, D-76021 Karlsruhe, Germany
- Center for Functional Nanostructures, Universität Karlsruhe, 76131 Karlsruhe, Germany
References
- 1. J.D. Yuen, A.S. Dhoot, E.B. Namdas, N.E. Coates, M. Heeney, I. McCulloch, D. Moses, A.J. Heeger, J. Am. Chem. Soc. 129, 14367 (2007)
- 2. M.J. Panzer, C.D. Frisbie, Adv. Funct. Mater. 16, 1051 (2006)
- 3. M.J. Panzer, C.D. Frisbie, J. Am. Chem. Soc. 129, 6599 (2007)
- 4. G.P. Siddons, D. Merchin, J.H. Back, J.K. Jeong, M. Shim, Nano Lett. 4, 927 04
- 5. T. Ozel, A. Gaur, J.A. Rogers, M. Shim, Nano Lett. 5, 905 05
- 6. S. Dasgupta, R. Kruk, D. Ebke, A. Hütten, C. Bansal, H. Hahn, J. Appl. Phys. 104, 103707 (2008)
- 7. A.K. Mishra, C. Bansal, H. Hahn, J. Appl. Phys. 103, 094308 (2008)
- 8. S.V. Rotkin, K. Hess, Appl. Phys. Lett. 84, 3139 (2004)
- 9. S. Dasgupta, S. Gottschalk, R. Kruk, H. Hahn, Nanotechnology 19, 435203 (2008)
- 10. J. Ederth, P. Johnsson, G.A. Niklasson, A. Hoel, A. Hultåker, P. Heszler, C.G. Granqvist, A.R. van Doorn, M.J. Jongerius, D. Burgard, Phys. Rev. B 68, 155410 (2003)
- 11. J. Ederth, G.A. Niklasson, A. Hultå ker, P. Heszler, C.G. Granqvist, A.R. van Doorn, M.J. Jongerius, D. Burgard, J. Appl. Phys. 93, 984 (2003)
- 12. J. Ederth, A. Hultåker, G.A. Niklasson, P. Heszler, A.R. van Doorn, M.J. Jongerius, D. Burgard, C.G. Granqvist, Appl. Phys. A 81, 1363 (2005)
- 13. K. Okamura, N. Mechau, D. Nikolova, H. Hahn, J. Appl. Phys. 93, 083105 (2008)
- 14. H.E. Katz, Chem. Mater. 16, 4748 (2004)
- 15. D.V. Talapin, C.B. Murray, Science 310, 86 (2005)
- 16. T. Cui, Y. Liu, M. Zhu, Appl. Phys. Lett. 87, 183105 (2005)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv115n208kz