PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 115 | 2 | 473-476
Article title

Electrochemically-Gated Field-Effect Transistor with Indium Tin Oxide Nanoparticles as Active Layer

Content
Title variants
Languages of publication
EN
Abstracts
EN
An electrochemically-gated junction field-effect transistor with metallic conducting indium tin oxide nanoparticle array as active layer is reported. Fabrication of a field-effect device with a degenerative semiconductor like indium tin oxide (carrier concentration 10^{20}-10^{21} cm^{-3}) is possible by exploiting the high surface-to-volume ratio of nanoparticles and high surface charge density achievable by electrochemical gating. The on/off ratio obtained is 325 although the applied potential was restricted to the capacitive double layer region (to ensure high repeatability) without allowing redox reactions to take place at the interface.
Keywords
Contributors
author
  • Institute of Nanotechnology, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, D-76021 Karlsruhe, Germany
  • Center for Functional Nanostructures, Universität Karlsruhe, 76131 Karlsruhe, Germany
author
  • Institute of Nanotechnology, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, D-76021 Karlsruhe, Germany
author
  • Institute of Nanotechnology, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, D-76021 Karlsruhe, Germany
author
  • Institute of Nanotechnology, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, D-76021 Karlsruhe, Germany
  • Center for Functional Nanostructures, Universität Karlsruhe, 76131 Karlsruhe, Germany
References
  • 1. J.D. Yuen, A.S. Dhoot, E.B. Namdas, N.E. Coates, M. Heeney, I. McCulloch, D. Moses, A.J. Heeger, J. Am. Chem. Soc. 129, 14367 (2007)
  • 2. M.J. Panzer, C.D. Frisbie, Adv. Funct. Mater. 16, 1051 (2006)
  • 3. M.J. Panzer, C.D. Frisbie, J. Am. Chem. Soc. 129, 6599 (2007)
  • 4. G.P. Siddons, D. Merchin, J.H. Back, J.K. Jeong, M. Shim, Nano Lett. 4, 927 04
  • 5. T. Ozel, A. Gaur, J.A. Rogers, M. Shim, Nano Lett. 5, 905 05
  • 6. S. Dasgupta, R. Kruk, D. Ebke, A. Hütten, C. Bansal, H. Hahn, J. Appl. Phys. 104, 103707 (2008)
  • 7. A.K. Mishra, C. Bansal, H. Hahn, J. Appl. Phys. 103, 094308 (2008)
  • 8. S.V. Rotkin, K. Hess, Appl. Phys. Lett. 84, 3139 (2004)
  • 9. S. Dasgupta, S. Gottschalk, R. Kruk, H. Hahn, Nanotechnology 19, 435203 (2008)
  • 10. J. Ederth, P. Johnsson, G.A. Niklasson, A. Hoel, A. Hultåker, P. Heszler, C.G. Granqvist, A.R. van Doorn, M.J. Jongerius, D. Burgard, Phys. Rev. B 68, 155410 (2003)
  • 11. J. Ederth, G.A. Niklasson, A. Hultå ker, P. Heszler, C.G. Granqvist, A.R. van Doorn, M.J. Jongerius, D. Burgard, J. Appl. Phys. 93, 984 (2003)
  • 12. J. Ederth, A. Hultåker, G.A. Niklasson, P. Heszler, A.R. van Doorn, M.J. Jongerius, D. Burgard, C.G. Granqvist, Appl. Phys. A 81, 1363 (2005)
  • 13. K. Okamura, N. Mechau, D. Nikolova, H. Hahn, J. Appl. Phys. 93, 083105 (2008)
  • 14. H.E. Katz, Chem. Mater. 16, 4748 (2004)
  • 15. D.V. Talapin, C.B. Murray, Science 310, 86 (2005)
  • 16. T. Cui, Y. Liu, M. Zhu, Appl. Phys. Lett. 87, 183105 (2005)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv115n208kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.