PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 115 | 2 | 455-461
Article title

Molecular Electronics: A Review of Experimental Results

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Molecular electronics aims for scaling down electronics to its ultimate limits by choosing single molecules as the building blocks of active devices. The advantages of this approach are the high reproducibility of molecular synthesis on the nanometer scale, the ability of molecules to form large structures by self-assembly, and the huge versatility of molecular complexes. On the other hand, conventional contacting techniques cannot form contacts on the single molecule scale and imaging techniques nowadays cannot provide a detailed image of such junctions. Therefore, the fabrication has to rely to some degree on self-organization of the constituents. The proof that a molecule has been contacted successfully can only be given by indirect methods, for example by measuring the current transport through the junctions. Here we give an overview of various techniques that were used successfully to contact molecules and to characterize them electrically. The techniques range from methods to contact single molecules to such which can be used to characterize ensembles of molecules. Especially, the comparison between such different techniques shows that a single measurement is always prone to artefacts originating from the unknown microscopic details of the junctions. It is therefore necessary to perform a statistically relevant number of measurements in order to resolve molecular properties. Various properties of the molecules can be studied. Special examples are the influence of conformational changes of the molecules, differences between various coupling endgroups of the molecules and effects of light-irradiation onto the molecular junctions.
Keywords
EN
Year
Volume
115
Issue
2
Pages
455-461
Physical description
Dates
published
2009-02
References
  • 1. G.E. Moore, Electronics 38, 8 (1965)
  • 2. A. Aviram, M.A. Ratner, Chem. Phys. Lett. 29, 277 (1974)
  • 3. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997)
  • 4. C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones II, J.M. Tour, Appl. Phys. Lett. 71, 611 (1997)
  • 5. C. Kergueris, J.-P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga, C. Joachim, Phys. Rev. B 59, 12505 (1999)
  • 6. C.P. Collier, E.W. Wong, M. Belohradsk, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath, Science 285, 391 (1999)
  • 7. Introducing Molecular Electronics, Lecture Notes in Physics, Eds. G. Cuniberti, G. Fagas, K. Richter, Springer, Berlin 2005, p. 519
  • 8. W. Wang, T. Lee, M.A. Reed, Phys. Rev. B 68, 035416 (2003)
  • 9. R.F. Service, Science 302, 556 (2003)
  • 10. H.v. Houten, C.W.J. Beenakker, A.A.M. Stargin, Coulomb-Blockade Oscillations in Semiconductor Nanostructures, Plenum, New York 1992, B294
  • 11. W. Wang, T. Lee, M.A. Reed, Phys. Rev. B 68, 035416 (2003)
  • 12. A. Nitzan, Annu. Rev. Phys. Chem. 52, 681 (2001)
  • 13. B.B. Schmidt, M.H. Hettler, G. Schoen, Phys. Rev. B 75, 115125 (2007)
  • 14. R.G. Nuzzo, D.L. Allara, J. Am. Chem. Soc. 105, 4481 (1983)
  • 15. C.W. Sheen, J.X. Shi, J. Maartensson, A.N. Parikh, D.L. Allara, J. Am. Chem. Soc. 114, 1514 (1992)
  • 16. L. Venkataraman, J.E. Klare, I.W. Tam, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Nano Lett. 6, 458 (2006)
  • 17. H. Park, A.K.L. Lim, A.P. Alivisatos, J. Park, P.L. McEuen, Appl. Phys. Lett. 75, 301 (1999)
  • 18. E.A. Osorio, K. O'Neill, N. Stuhr-Hansen, O.F. Nielsen, T. Bjornholm, H.S.J. van der Zant, Adv. Mater. 19, 281 (2007)
  • 19. A. de Picciotto, J.E. Klare, C. Nuckolls, K. Baldwin, A. Erbe, R. Willett, Nanotechnology 16, 3110 (2005)
  • 20. H.S.J. van der Zant, Y. Kervennic, M. Poot, K. O'Neill, Z. de Groot, J.M. Thijssen, H.B. Heersche, N. Stuhr-Hansen, T. Bjornholm, D. Vanmaekelbergh, C.A. van Walree, L.W. Jenneskens, Faraday Discuss. 131, 347 (2006)
  • 21. H.S.J. van der Zant, E.A. Osorio, M. Poot, K. O'Neill, Phys. Status Solidi B 243, 3408 (2006)
  • 22. D. Natelson, L.H. Yu, J.W. Ciszek, Z.K. Keane, J.M. Tour, Chem. Phys. 324, 267 (2006)
  • 23. E.A. Osorio, K. O'Neill, M. Wegewijs, N. Stuhr-Hansen, J. Paaske, T. Bjornholm, H.S.J. van der Zant, Nano Lett. 7, 3336 (2007)
  • 24. H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, P.L. McEuen, Nature 407, 57 (2001)
  • 25. J.J. Parks, A.R. Champagne, G.R. Hutchison, S. Flores-Torres, H.D. Abruna, D.C. Ralph, Phys. Rev. Lett. 99, 026601 (2007)
  • 26. R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C. Hemert, J.M. Ruitenbeek, Nature 419, 906 (2002)
  • 27. J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor, H. v. Löhneysen, Phys. Rev. Lett. 88, 176804 (2002)
  • 28. T. Bohler, A. Edtbauer, E. Scheer, Phys. Rev. B 76, 125432 (2007)
  • 29. J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor, H.v. Löhneysen, Phys. Rev. Lett. 88, 176804 (2002)
  • 30. R. Huber, M. T. Gonzalez, S. Wu, M. Langer, S. Grunder, V. Horhoiu, M. Mayor, M.R. Bryce, C. Wang, R. Jitchati, Ch. Schoenenberger, M. Calame, J. Am. Chem. Soc. 130, 1080 (2008)
  • 31. T. Bohler, J. Grebing, A. Mayer-Gindner, H.V. Löhneysen, E. Scheer, Nanotechnology 15, S465 (2004)
  • 32. H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, P.L. McEuen, Nature 407, 57 (2001)
  • 33. J. Reichert, H.B. Weber, M. Mayor, H. v. Löhneysen, Appl. Phys. Lett. 82, 4137 (2003)
  • 34. N. Kang, A. Erbe, E. Scheer, to be published
  • 35. M. Elbing, R. Ochs, M. Koentopp, M. Fischer, C. v. Hänisch, F. Weigend, F. Evers, H.B. Weber, M. Mayor, Proc. Natl. Acad. Sci. 102, 8815 (2005)
  • 36. X.Y. Xiao, B.Q. Xu, N.J. Tao, Nano Lett.4 267 (2004)
  • 37. C. Li, I. Pobelov, T. Wandlowski, A. Bagrets, A. Arnold, F. Evers, J. Am. Chem. Soc. 130, 318 (2008)
  • 38. L. Venkataraman, J.E. Klare, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Nature 442, 904 (2006)
  • 39. S. Woitellier, J.P. Launay, C. Joachim, Chem. Phys. 131, 481 (1989)
  • 40. N.B. Zhitenev, A. Erbe, Z. Bao, Phys. Rev. Lett. 92, 186805 (2004)
  • 41. A. Erbe, W. Jiang, Z. Bao, D. Abusch-Magder, D.M. Tennant, E. Garfunkel, N. Zhitenev, J. Vac. Sci. Technol. B 23, 3132 (2005)
  • 42. H.B. Akkerman, P.W. M. Blom, D.M. de Leeuw, B. de Boer, Nature 441, 69 (2006)
  • 43. A.J. Kronemeijer, H.B. Akkerman, T. Kudernac, B.J. van Wees, B.L. Feringa, P.W.M. Blom, B. de Boer, Adv. Mater. 20, 1467 (2008)
  • 44. Y.L. Loo, R.L. Willett, K.W. Baldwin, J.A. Rogers, Appl. Phys. Lett. 81, 562 (2002)
  • 45. Y.L. Loo, D.V. Lang, J.A. Rogers, J.W.P. Hsu, Nano Lett. 3 913, (2003)
  • 45. Y.L. Loo, D.V. Lang, J.A. Rogers, J.W.P. Hsu, Nano Lett. 3 913, (2003)
  • 46. C. Kreuter, S. Bächle, E. Scheer, A. Erbe, unpublished results
  • 47. W. Haiss, H. v. Zalinge, D. Bethell, J. Ulstrup, D.J. Schiffrin, R.J. Nichols, Faraday Discuss. 131, 253 (2006)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv115n205kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.