Title variants
Languages of publication
Abstracts
We discuss the finite-temperature phase diagram in three-dimensional Bose-Hubbard model relevant for the Bose-Einstein condensates in optical lattices, by employing U(1) quantum rotor approach and the topologically constrained path integral, that includes a summation over U(1) topological charge. The effective action formalism allows us to formulate a problem in the phase only action and obtain analytical formulae for the critical lines beyond mean-field theory.
Discipline
- 03.75.Nt: Other Bose-Einstein condensation phenomena
- 03.75.Lm: Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations(see also 74.50.+r Tunneling phenomena; Josephson effects in superconductivity)
- 05.30.Jp: Boson systems(for static and dynamic properties of Bose-Einstein condensates, see 03.75.Hh and 03.75.Kk; see also 67.10.Ba Boson degeneracy in quantum fluids)
Journal
Year
Volume
Issue
Pages
418-420
Physical description
Dates
published
2009-01
References
- 1. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)
- 2. M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, I. Bloch, Nature 415, 39 (2002)
- 3. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)
- 4. T.K. Kopeć, J.V. José, Phys. Rev. B 60, 7473 (1999)
- 5. M. Abramovitz, I. Stegun, Handbook of Mathematical Functions, Ninth Dover Publ. Inc., New York 1970, p. 589
- 6. T.P. Polak, T.K. Kopeć, Phys. Rev. B 76, 094503 (2007)
- 7. F. Gerbier, Phys. Rev. Lett. 99, 120405 (2007)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv115n1122kz