PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 115 | 1 | 73-76
Article title

New Paradigm of Triplet Superconductivity

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Since 1980, more than 10 or so triplet superconductors have been discovered. Now we can put them into two separate classes. Type A consists of e.g. (TMTSF)_{2}PF_{6}, (TMTSF)_{2}ClO_{4}, UPt_3, Sr_{2}RuO_{4}, PrOs_{4}Sb_{12}. These triplet superconductors are characterized with the extreme smallness of the spin-orbit coupling energy E_{so} (≪ Δ, where Δ is the superconducting gap). Also like superfluid ^{3}He-A, the order parameter of these superconductors are characterized by l^ (the chiral vector) and d^ (the spin vector). In these superconductors, an Abrikosov vortex splits into a pair of half quantum vortices at low temperatures. Type A_{1} comprises most of non-centrosymmetric triplet superconductors discovered recently, e.g. CePt_{3}Si, CeIrSi_3, CeRhSi_3, and Li_{2}Pt_{3}B. They are characterized by l^ and d^_{1}+id^_{2} like superfluid ^{3}He-A_{1}. The spin-orbit coupling energy E_{so} is extremely large E_{so}≈ 10^3 K. Therefore, as noted by Frigeri et al., the Fermi surface splits for the up-spin one and the down-spin one. However, contrary to Frigeri et al., the superconductivity should occupy only the larger Fermi surface (say for spin-up). The other Fermi surface remains in the normal state. Also in type A_1 superconductors, an Abrikosov vortex does not split into a pair of half quantum vortices. Further all thase triplet superconductors (both type A and type A_1) harbor the zero mode or the Majorana fermion attached to each vortex, of which implication should be further explored.
Keywords
EN
Publisher

Year
Volume
115
Issue
1
Pages
73-76
Physical description
Dates
published
2009-01
Contributors
author
  • Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
author
  • Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan
author
  • Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA
References
  • 1. D. Jerome, A. Mazaud, M. Ribault, K. Bechgaard, J. Phys. Lett. 41, L95 (1980)
  • 2. M. Takigawa, H. Yasuoka, G. Saito, J. Phys. Soc. Jpn. 56, 873 (1987)
  • 3. M. Sigrist, K. Ueda, Rev. Mod. Phys. 63, 239 (1991)
  • 4. K. Maki, S. Haas, D. Parker, H. Won, in: Topology in Ordered Phases, Eds. S. Tanda, T. Matsuyama, M. Oda, Y. Asano, K. Yakubo, World Sci., Singapore 2006, p. 171
  • 5. D. Vollhardt, P. Wölfle, The Superfluid Phases in Helium Three, Taylor and Francis, London 1990
  • 6. G.E. Volovik, The Universe in a Helium Droplet, Clarendon, Oxford 2003
  • 7. H. Won, S. Haas, D. Parker, S. Telang, A. Vanyolos, K. Maki, in: Lectures on the Physics of Highly Correlated Electron Systems IX, Eds. A. Avella, F. Mancini, AIP Conf. Proc. Vol. 789, Melville 2005, p. 92
  • 8. E. Bauer, G. Hilscher, H. Michor, Ch. Paul, E.W. Scheidt, A. Gribanov, Yu. Seropegin, H. Noël, M. Sigrist, P. Rogl, Phys. Rev. Lett. 92, 027003 (2004)
  • 9. P.W. Anderson, Phys. Rev. B 30, 4000 (1994)
  • 10. E.J. Rashba, Sov. Phys. Solid State 2, 1109 (1960)
  • 11. P.A. Frigeri, D.F. Agterberg, A. Koga, M. Sigrist, Phys. Rev. Lett. 92, 097001 (2004)
  • 12. P.A. Frigeri, D.F. Agterberg, M. Sigrist, Nature Phys. 6, 115 (2004)
  • 13. R. Settai, T. Takeuchi, Y. Onuki, J. Phys. Soc. Jpn. 76, 051003 (2007)
  • 14. N. Kimura, Y. Muro, H. Aoki, J. Phys. Soc. Jpn. 76, 051010 (2007)
  • 15. T.C. Kobayashi, A. Hori, S. Fukushima, H. Hidaka, H. Kotegawa, T. Akazawa, K. Takeda, Y. Ohishi, E. Yamamoto, J. Phys. Soc. Jpn. 76, 051007 (2007)
  • 16. M. Nishiyama, Y. Inada, G.-Q. Zheng, Phys. Rev. Lett. 98, 047002 (2007)
  • 17. K. Maki, H.-Y. Kee, Y. Morita, J. Superc. Nov. Magn. 22, 71 (2009)
  • 18. D.A. Ivanov, in: Vortices in Unconventional Superconductors and Superfluids, Eds. R.P. Hübener, N. Schopohl, G.E. Volovik, Springer, Berlin 2002, p. 253
  • 19. D.A. Ivanov, Phys. Rev. Lett. 40, 268 (2001)
  • 20. C. Caroli, P.G. de Gennes, J. Matricon, Phys. Lett. 9, 310 (1964)
  • 21. P.G. de Gennes, The Superconductivity of Metals and Alloys, Benjamin, New York 1966; reprinted in Percus Book, Reading 1999
  • 22. H.Y. Kee, K. Maki, BCS Variations, to be published
  • 23. H.Y. Kee, A. Raghavan, K. Maki, preprint (cond-mat/0711.0929) (2007)
  • 24. Y. Morita, K. Maki, preprint, 2008
  • 25. E. Majorana, Nuovo Cimento 14, 171 (1937)
  • 26. R. Penrose, The Road to Reality, Vintage Books, A division of Random House, Inc., New York 2007
  • 27. H.Y. Kee, Y.B. Kim, K. Maki, Phys. Rev. B 62, R9275 (2000)
  • 28. M. Sigrist, D.F. Agterberg, Prog. Theor. Phys. 102, 965 (1999)
  • 29. D. Parker, K. Maki, S. Haas, Eur. Phys. J. B 49, 77 (2006)
  • 30. H.Y. Kee, K. Maki, Europhys. Lett. 80, 46003 (2007)
  • 31. K. Izawa, Y. Nakajima, J. Goryo, Y. Matsuda, S. Onuki, R. Settai, P. Thalmeier, K. Maki, Phys. Rev. Lett. 90, 117001 (2003)
  • 32. K. Deguchi, Z.Q. Mao, Y. Maeno, J. Phys. Soc. Jpn. 73, 1313 (2004)
  • 33. Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, Christoph Renner, Rev. Mod. Phys. 79, 353 (2007)
  • 34. C.C. Tsuei, J.R. Kirtley, Rev. Mod. Phys. 72, 969 (2000)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv115n1012kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.