Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 114 | S | S-49-S-58

Article title

The Inelastic Mean Free Path οf Electrons. Research in Budapest, Warsaw, Wrocław and Clermont-Ferrand. Brief History and New Results

Content

Title variants

Languages of publication

EN

Abstracts

EN
The inelastic mean free path of electrons (IMFP) is an important material parameter for description of electron transport processes in solids. This parameter is particularly useful for quantifying the electron spectroscopies, in particular Auger electron spectroscopy, X-ray photoelectron spectroscopy, electron energy loss spectroscopy and elastic peak electron spectroscopy. In this work, a brief overview of the IMFP determination is presented. Generally, there are two groups of methods to determine the IMFP: (i) calculations using the theoretical model based on the experimental optical data, and (ii) calculations using theory relating the IMFP and the measured probability elastic electron backscattering from solids. Major advances in the development of the second group of methods were made in three laboratories; these advances are reviewed here. The elastic backscattering probability, in absolute or relative units, can be conveniently evaluated from the elastic peak intensity. However, much effort is needed to develop the theory for calculating the IMFP, which typically involves the Monte Carlo simulations of electron trajectories in solids. Presently, this theory and typical procedures of the spectra processing are implemented in the software package EPESWIN developed by Jablonski. In recent years, much attention is devoted to the phenomenon of the electron energy losses in the surface region of solids. Reliability of the theory of elastic backscattering is distinctly improved if this effect is taken into account.

Keywords

EN

Contributors

author
  • Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest, Hungary
author
  • Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest, Hungary
author
  • Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest, Hungary
author
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
author
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

References

  • 1. C.J. Powell, A. Jablonski, J. Phys. Chem. Ref. Data 28, 19 (1999)
  • 2. G. Gergely, Prog. Surf. Sci. 71, 31 (2002)
  • 3. M. Seah, W.A. Dench, Surf. Interface Anal. 1, 2 (1979)
  • 4. S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 21, 165 (1994)
  • 5. C.J. Powell, A. Jablonski, F. Salvat, S. Tanuma, D.R. Penn, J. Surf. Anal. 12, 88 (2005)
  • 6. A. Jablonski, P. Mrozek, G. Gergely, M. Menyhard, A. Sulyok, Surf. Interface Anal. 6, 291 (1984)
  • 7. W. Dolinski, H. Nowicki, S. Mróz, Surf. Interface Anal. 11, 229 (1988)
  • 8. L. Bideux, Ph.D. Thesis, No. 609, Univ. Blaise-Pascal, Clermont-Ferrand 1994
  • 9. W. Dolinski, S. Mróz, J. Palczynski, B. Gruzza, P. Bondot, A. Porte, Acta Phys. Pol. A 81, 193 (1992)
  • 10. A. Jablonski, B. Lesiak, G. Gergely, Phys. Scr. 39, 363 (1989); Vacuum 40, 67 (1990)
  • 11. B. Lesiak, A. Kosinski, A. Jablonski, A. Sulyok, G. Gergely, J. Tóth, D. Varga, Acta Phys. Pol. A 109, 789 (2006)
  • 12. A. Jablonski, Surf. Interface Anal. 37, 1034 (2005)
  • 13. Y.F. Chen, P. Su, C.M. Kwei, C.J. Tung, Phys. Rev. B 47, 17547 (1994)
  • 14. C.M. Kwei, C.Y. Wang, C.J. Tung, Surf. Interface Anal. 26, 682 (1998)
  • 15. S. Tanuma, K. Ichimura, K. Goto, Surf. Interface Anal. 30, 212 (2000)
  • 16. R. Oswald, Ph.D. Thesis, Eberhard-Karls Univ. Tuebingen, 1992
  • 17. Y.F. Chen, Surf. Sci. 519, 115 (2002)
  • 18. W.S.M. Werner, L. Kover, S. Egri, J. Toth, D. Varga, Surf. Sci. 585, 85 (2005)
  • 19. T. Nagatomi, K. Goto, Appl. Phys. Lett. 87, 224107 (2005); Phys. Rev. B 75, 235424 (2007)
  • 20. C.M. Kwei, Y.C. Li, C.J. Tung, Surf. Sci. 600, 3690 (2006)
  • 21. G. Gergely, M. Menyhard, S. Gurban, J. Toth, D. Varga, A. Jablonski, J. Surf. Anal. 12, 140 (2005)
  • 22. G. Gergely, M. Menyhard, S. Gurban, J. Toth, D. Varga, Surf. Interface Anal. 36, 1098 (2004)
  • 23. M. Pauly, S. Tougaard, F. Yubero, Surf. Interface Anal. 37, 1151 (2005)
  • 24. K. Goto, http://www.sasj.jp/compro
  • 25. A. Jablonski, J. Zemek, Surf. Sci. 601, 3409 (2007)
  • 26. Adel Alkafri, Y. Ichikawa, R. Shimizu, K. Goto, J. Surf. Anal. 14, 2 (2006)
  • 27. L. Zommer, A. Jablonski, G. Gergely, S. Gurban, Vacuum 82, 201 (2008)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv114ns04kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.